

Transformations of sulfate and elemental sulfur in soil

Fien Degryse¹, Cuicui Zhao¹, Sola Ajiboye¹, Gupta Vadakattu², Michael McLaughlin^{1,2} Fertilizer Technology Research Centre, University of Adelaide Land & Water, CSIRO, Adelaide

Introduction

 Sulfur is an essential major plant nutrient, but has received relatively little attention.

Removal (kg/ha/y) Input (kg/ha/y)

Crops: 5-20 Atmospheric: 2-20

Leaching: 0-50 Mineral weathering: 0-5

⇒ Removal > input (especially in high-rainfall areas) without any other S input

Stevenson & Cole, 1999

 S deficiency has become more common, because of the use of high-analysis S-free fertilizers and reduced atmospheric S deposition

Introduction: inorganic sulfur fertilisers

S form	(Dis)advantages	Fertilisers (%S)	
Sulfate	+ Readily available	(NH ₄) ₂ SO ₄ (24%)	
	- Susceptible to leaching losses	KMag (K ₂ SO ₄ .2MgSO ₄ , 21%)	
	High transport/application cost on a nutrient basis (SO ₄ 2-)	Gypsum (18%)	
	(K ₂ SO ₄ (18%)	
		SSP (11%)	
Elemental S	+ Lower transportation/application cost	ES pastilles/prills (~90%)	
	Sustained release	ES cogranulated with TSP, MAP, urea etc.	
	- Only available when oxidised		

Introduction: the S cycle in soil

Outline

- Incubation experiment 1 (mineralisation/immobilisation):
 - 10 Australian soils
 - Incubated without or with 50 mg S/kg as (NH₄)₂SO₄
- Incubation experiment 2 (oxidation):
 - 10 (N and S-)American and Australian soils
 - Incubated with 100 mg S/kg elemental S (ES)
- Pot experiment:
 - S-Australian soil
 - Without or with 20 mg S/kg in different forms
 - 2 Canola crops
- (Field trials)

1. Mineralisation/Immobilisation

- Concurrent processes:
 - Net immobilisation= I-M
 - Steady state if I=M
 - Changes in SO₄-S concentrations indicate the net immobilisation (or mineralisation), but not the gross immobilisation and mineralisation rates.

1. Mineralisation/Immobilisation

• Isotopic labelling

Mineralisation, M

Immobilisation, I

SO₄-S

tracer

1. Mineralisation/Immobilisation

Isotopic labelling

Method:

- 10 soils, pre-incubated for 1 week
- Addition of $^{35}SO_4$, with or without 50 mg S/kg as $(NH_4)_2SO_4$
- Sulfate extraction with 0.01 M Ca(H_2PO_4)₂. Stable S and ³⁵S in extract determined, at day 1, 2, 5, 9, 16, 28, 50 and 84.

1. Mineralization/Immobilization – no added S

- Little change in sulfate concentrations

1. Mineralization/Immobilization – no added S

- Solution for ³⁵SO₄ (f, relative to t=0; f=1 at t=0) if steady state:

$$f=f_{eq}+ (1-f_{eq}).exp(-kt) \quad with \qquad f_{eq}=\frac{SO_4-S}{SO_4-S+LOS}$$
(Fitting parameters: LOS and M=I)
$$k=\frac{M}{LOS}+\frac{I}{SO_4-S}$$

1. Mineralization/Immobilization – no added S

	pH (CaCl ₂)	Total S	SO ₄ -S	LOS	M=I	Turnover t
	_	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg/d)	(days)
SA4	7.3	182	8	7	0.17	43
SA6	6.2	205	5	13	0.28	49
SA8	7.5	279	7	13	0.34	38
V1	5.1	224	6	14	0.68	21
V2	7.3	83	5	16	0.40	41
N1	5.2	128	9	19	0.24	78
N4	4.6	133	10	16	0.20	80
WA1	4.0	64	19	8	0.98	8
Q2	6.7	52	5	11	0.38	28
MIN	4.0	52	5	7	0.17	8
MAX	7.5	279	19	19	0.98	80

Crop removal: $5-20 \text{ kg/ha} \sim 2-7 \text{ mg/kg}$ (2 dm depth)

S uptake by crops: up to circa 0.3 mg/kg/day

1. Mineralization/Immobilization - with added S

- Net immobilisation: 0.5-16 mg/kg in 84 days
- High sulfate levels result in relatively less incorporation of ³⁵SO₄-S into the organic S pool

1. Mineralization/Immobilization - with added S

Method:

- 10 soils, pre-incubated for 1 week
- Addition of 100 mg ES/kg (d_{av} 40 μ m) (+ $^{35}SO_4$ tracer)
- At day 1, 7, 14, 28, 56 and 84:
 - Sulfate extraction with 0.01 M Ca(H₂PO₄)₂; stable S and ³⁵S in extract determined
 - Chloroform extraction and determination of elemental S with HPLC

		pH (CaCl ₂)	OC	Total S	SO ₄ -S	LOS	Oxidation rate
		2	(%)	(mg/kg)	(mg/kg)	(mg/kg)	(%/day)
1	USA1	5.2	0.4	36	9	2	0.6
2	USA2	6.1	2.0	182	16	74	2.1
3	Brazil1	3.8	0.9	99	13	3	0.6
4	Brazil2	3.9	2.2	322	49	10	0.4
5	Brazil3	4.3	8.0	99	23	2	0.5
6	Brazil4	4.4	1.1	97	17	5	0.4
7	Chile	5.7	3.8	301	55	4	0.4
8	Argentina	5.4	2.9	287	12	20	1.3
9	Aus1	6.1	0.8	99	5	14	0.5
10	Aus2	7.8	2.0	196	9	nd	2.0
	MIN	3.8	0.4	36	5	2	0.4
	MAX	7.8	3.8	322	55	74	2.1

Soils with relatively low oxidation rate: two sandy soils and an Andisol with high sulfate concentration.

3. Pot experiment

Methods:

- Sandy soil (South Australia, pH 7.0)
- Labelled with ³⁵SO₄ and pre-incubated for 50 days
- Fertilizer added (20 mg S per kg):
 - $(NH_4)_2SO_4$ (=SoA)
 - Elemental S pastille (90% ES)-
 - MAP+5%ES+5%SO₄-S fertiliser
- Two Canola crops:
 - Crop 1: day 1–42
 - Soil mixed
 - Crop 2: day 80 125

3. Pot experiment

Crop 1

Crop 2

3. Pot experiment

Control

ES

MAP

pastille +ES/SO₄

SoA

Control

ES

MAP

pastille +ES/SO₄

SoA

ES

Control

MAP

pastille +ES/SO₄

SoA

Conclusions

- Labile organic S pool in 20 soils ranged from 2-74 mg/kg (1-40% of total S). The turnover of LOS was fast (turnover time of 8-80 days).
- Elemental S oxidation range at 25°C ranged from 3 to 37 μ g/cm²/day (~ 0.2–3% per day for ES with d=40 μ m). Soil properties (pH, others) affect the oxidation rate.
- The cycling of S in organic matter is important to understand soil S availability and fertiliser S fate.
- Sulfate fertilisers are susceptible to leaching and luxury uptake. The slow release from elemental S allows for a supply later in the season or in subsequent seasons.

Acknowledgements

Technical assistance:
Bogumila Tomczak
Colin Rivers
Deepika Setia
Ashleigh Broadbent

Thank you for your attention!

