

Sulfur uptake by corn from fall- or spring-applied 34S-labelled fertilizer

Fien Degryse, Rodrigo Coqui da Silva, Roslyn Baird and Mike McLaughlin

adelaide.edu.au seek LIGH7

Sulfur fertilizers

- Sulfur is an essential major plant nutrient, but has received relatively little attention
- S deficiency has become more common, because of reduced input (fertilizer, atmospheric) and increased output (yields)
- Inorganic S fertilizers:

Sulfate	Elemental S
+ Readily available	+ Lower transportation/application cost
- Susceptible to leaching losses	Sustained release
High transport/application cost on a nutrient basis (SO ₄ ²⁻)	- Only available when oxidised

Leaching of SO₄-S

- Solid-liquid partitioning coefficient (K_d) in most soils <0.2 L/kg
 ⇒ little retardation
- 250 mm (10 in) of excess rainfall can leach SO₄-S to a depth of 60 cm (24 in)
 - ⇒ high leaching losses of sulfate in high-rainfall environments may occur, particularly with fall-applied fertilizer, e.g.

Devine and Holmes, J. Agric. Sci. 1964

Oxidation of elemental S

- Oxidation of elemental S depends on:
 - environmental factors, mainly temperature (Q10 around 3.5);
 - soil chemical and biological factors; and
 - fertilizer properties (surface area)
- Oxidation of co-granulated ES is slower than for particulate ES due to reduced surface area, e.g.

Fertiliser	k _{oxid} (d ⁻¹)	t _{1/2} (days)		
Powdered ES	0.02	35 -	→	
MAP+5%ES	0.006	120		
ES pastille	0.0005	1400	•	

Degryse et al, under review;

Similar oxidation rates estimated from pot trial (Degryse et al, Plant Soil 2015)

Aim

Assess contribution of fertilizer SO_4 -S and elemental S (ES) in MAP fertilizer (MESZ) to crop uptake in the Corn Belt region when fertilizer is fall or spring applied

Source: http://www.wrcc.dri.edu/precip.html

³⁴S labelling – principle

ES labelled plots: 34S

SO₄ labelled plots: ³⁴SO₄

$$\%Sdf(fert ES) = \frac{atom\%^{34} Sexcess_{plant}}{atom\%^{34} Sexcess_{fertES}} x100$$

$$%Sdf(fert SO_4) = \frac{atom\%^{34} Sexcess_{plant}}{atom\%^{34} Sexcess_{fertSO4}} x100$$

Experimental design and methods

- Champaign (Illinois, US) humid continental climate
- MESZ applied at 280 kg/ha (=28 kg S/ha) in fall (25 Nov '13) or in spring at time of sowing (15 June '14); $SO_4-S \text{ or ES labeled with } ^{34}S$
- Corn manually sown in spring
- Early stage (20 Aug '14) and maturity harvest (31 Oct)
- 34S atom% in plant material analysed by IRMS (Isolytix)

										Plot								_		
	Borde	r rows	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Borde	r rows	16
			MAP	MAP	MESZ		ES-Labele	ed MESZ		MESZ	:	SO ₄ -Label	led MESZ		MESZ	MAP	MAP			SOP
Fertilis	er rate (g/plot)	16.65	16.65	21.35	21.35	21.35	21.35	21.35	21.35	21.35	21.35	21.35	21.35	21.35	16.65	16.65			200
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VT Harvest	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Maturity	•	•	•	•		•	•	•	•	•	•	•	•		•	•	· ·	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Assessing sulfate leaching

- To estimate SO₄-S leaching:
 - plot with sulfate of potash (SOP) at 2630 kg/ha; applied at fall or spring
 - three cores sampled up to 90 cm (36 in) and analysed for SO_4 -S (0.01 M $Ca(H_2PO_4)_2$ extraction)
- Weather during experimental period:

Precipitation

- Fall application to seeding
 55 cm (21.6 in)
- Seeding to harvest
 59 cm (23.3 in)

Yields and S uptake

Stage	Whole plant yield (ton/ha)	S in plant (mg/ kg)	S uptake (kg/ha)
VT	11.3	821	9.3
R6	21.4 / 14.4 ^a	745 / 434 ^a	22.6

^a grain/vegetative biomass

% plant S derived from fertiliser

Spring applied

Stage	SO ₄ -S	ES
VT	13.7	> 8.3
R6	10.6	ns 11.8

Fall applied

Stage	SO ₄ -S	ES
VT	5.6 r	ns 6.4
R6	4.1	1 0.4

- Spring applied:
 - lower uptake from ES than SO₄-S at tasseling
 - similar uptake at maturity
- Fall applied:
 - similar uptake at tasseling
 - higher uptake from ES than SO₄-S at maturity

Recovery of fertilizer S in plant

- Spring applied: ca 16% of fertilizer ES and SO_4 -S recovered in crop at maturity
- Fall applied: recovery similar to spring-applied for ES but 2.5-fold lower for SO₄-S

Sulfate leaching

36

59

Precip (cm)

Precip (cm)

91

114

- Leaching can be related to estimated infiltration
 (water use estimated based on Algoazany et al. JEQ 2007; same watershed)
- Leaching in agreement with solute transport predictions (Hydrus-1D)

Sulfate leaching vs S fertilizer recoveries

- ES fully oxidized and no SO₄-S leaching
 ⇒ circa equal recoveries
- ES fully oxidized and 50% SO₄-S leached below root zone
 ⇒ ES/SO₄-S recovery = 2
- ES 50% oxidized and 50% SO₄-S leached below root zone
 ⇒ circa equal recoveries

Sulfate leaching vs S fertilizer recoveries

- \Rightarrow From the recovery of ES relative to SO₄-S and the extent of sulfate leaching, it is estimated that:
- ca 30% of ES was oxidized at early stage; and
- ca 50% of ES was oxidized at maturity.

Conclusions

- Oxidation of elemental S in one season was estimated to be ca 50%
- Spring application of MESZ (5% SO₄-S and 5% ES):
 - About 50% of SO₄-S estimated to be leached below the root zone
 - Similar contribution of fertilizer SO₄-S and ES
- Fall application of MESZ:
 - About 85% of SO₄-S estimated to be leached below the root zone
 - 2.5 times more S in the plant derived from ES than from SO₄-S

Benefit of a slow release S source in high-rainfall environments, especially with fall applications

Acknowledgements

Dr Fred Below and team (University of Illinois)

Technical assistance:
Ashleigh Broadbent
Bogumila Tomczak
Colin Rivers

Thank you for your attention!