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Goals of the talk

» Difference between spectral and mobility gap

» Bulk-edge correspondence for quantum Hall Hamiltonians (2
dim)

» Bulk-edge correspondence for chiral Hamiltonians (1 dim)



Quantum Hall systems



The experiment (von Klitzing, 1980)
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The experiment (von Klitzing, 1980)

Hall-Ohm law
7= O'E o= ( opb  oH )

—0H 0D

on: Hall conductance
op: ohmic (dissipative) conductance

on .- experimental curve
[€2/h] = 1/27-3 =<
1o P B quantized plateaus
zq
14 _ "~ classical curve
/ \-/ \4/ \ n
op

Width of plateaus increases with disorder
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The spectrum of a single-particle Hamiltonian
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Spectral vs. Mobility Gap

The spectrum of a single-particle Hamiltonian

extended states (continuous spectrum)
' localized states (pure point spectrum)
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,uf Fermi energy

» (integrated) density of states n(u) is constant for i in a Spectral
Gap, and strictly increasing otherwise
» Hall conductance oy(u) is constant for u in a Mobility Gap

e
.

O'H(n)

n

Plateaus arise because of a Mobility Gap only!



Mobility gap, technically speaking

Hamiltonian Hg on (2(Z9)
P, = E(_,.)(Hg) Fermi projection,

Assumption. Fermi projection has strong off-diagonal decay:
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Mobility gap, technically speaking

Hamiltonian Hg on (?(Z9)
P, = E(_,.)(Hg) Fermi projection,

Assumption. Fermi projection has strong off-diagonal decay:

supe 1D e XN |P, (x, X)| < o0
x’ %

(some v >0, alle > 0)
» Trivially true for Hg a multiplication operator in position space
» Trivially false for Hg a function of momentum (P,(x,0) ~ |x|~9)
» Proven in (virtually) all cases where localization is known.



IQHE as a Bulk effect

Paradigm: Cyclotron orbit drifting under a electric field E

()
\_/

Hamiltonian Hg in the plane. Kubo formula (linear response to E‘)
OB = ltr PH “P,ua /\1]7 [P,LL7 /\2]]
where

Ai = A(x), (i = 1,2) switches Ny



IQHE as a Bulk effect (remarks)

OB = itrPH [[Pll* /\1], [P/M /\2]]
where A; = A(x;), (i = 1,2) switches. Supports of VA;:

Xgﬁ\

X1

Remark. The trace is well-defined. Roughly: An operator has a
well-defined trace if it acts non-trivially on finitely many states only.
Here the intersection contains only finitely many sites.



IQHE as an edge effect (spectral gap)
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Hamiltonian Hg on the upper half-plane: restriction of Hg through
boundary conditions at x, = 0.
State p(Hg): 1-particle density matrix, e.9. p(Hg) = E(_ ) (HE), Or
(actually) smooth
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IQHE as an edge effect (spectral gap)

X2 4

/ \ E
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X =0 spec(He) ] xtended states X2 spec(Ha)
Xt = ound states

Hamiltonian Hg on the upper half-plane: restriction of Hg through
boundary conditions at x, = 0.

State p(Hg): 1-particle density matrix, e.g. p(Hg) = E(_« ) (HE), or
(actually) smooth

Current operator across x; = 0: i[Hg, A\1]
I'=itr(p(He + V) — p(HE))[HE, M]
AsV —0:1/V — o
o = i tr(p'(He)[He, M])



Equality of conductances

Theorem (Schulz-Baldes, Kellendonk, Richter). Ergodic setting. If the
Fermi energy p lies in a Spectral Gap of Hg, then

OF — OB.

In particular, o does not depend on p’, nor on boundary conditions.



What about the case of a Mobility Gap?

Is
or = —itr(p'(Hg)[He, M])

well-defined?



What about the case of a Mobility Gap?

Is
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well-defined?
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.. the definition of og needs to be changed in case of a Mobility Gap!

Guiding principle: Localized states should not contribute to the edge
current



What about the case of a Mobility Gap?
Spectral Gap Mobility Gap

L]

L]

Xo ¢ localized states Xo ¢
(or resonances)

b O
vv%xtended states 0 5 O

X1 X1
trace: yes tfrace: no

.. the definition of og needs to be changed in case of a Mobility Gap!
Analogy: Electrodynamics of continuous media
7= 7F + curl M = free + molecular currents

Localized states should not contribute to the (free) edge current



Equality of conductances

For a suitable definition of og:
Theorem (Elgart, G., Schenker). If supp p’ lies in a Mobility Gap, then

OF — OB

In particular o does not depend on p/, nor on boundary conditions.



Definition of og in case of a Mobility Gap
Replace Hg to H; (a > 0) as follows

edge: xo = —a
(eventually: —a — —o0)

» Current across the portion M of x; = 0:
—itr(p’(Ha)[Ha, A1]A2)  (exists!)
» Current across the portion H:



Definition of og in case of a Mobility Gap
Replace Hg to H; (a > 0) as follows

x2¢

>

X1

edge: xo = —a
(eventually: —a — —o0)

» Current across the portion B of x; = 0:
—itr(p'(Ha)[Ha, AM]A2)  (exists!)
» Current across the portion B: In the limit 2 — oo pretend that
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Definition of og in case of a Mobility Gap
Replace Hg to H; (a > 0) as follows
» Current across the portion B of x; = 0:

—itr(p’(Ha)[Ha, AM1]A2)  (exists!)

» Current across the portion B: In the limit 2 — oo pretend that

p'(Ha)~p'(Hg) = ZP JUa(¥a, -)

(sum over eigenvalues A of Hg: Hgy\ = \y)

(¥x, [He, M](1T — A2)a) = — (¥, [He, M]N29y)

» Together:
op = a|i_)mOo —itr(p' (Ha)[Ha, M]A2)+

+IZP ¢A7[HB7A1]A2’¢))\)



Sketch of proof of og = op

Technical tool: Representation of p(Hj) by
» quasi-analytic extension p(z), (z = x +iy € C)
» resolvent R(z) = (Hy — z)~!



Sketch of proof of og = op

Technical tool: Representation of p(Hj) by
» quasi-analytic extension p(z), (z = x +iy € C)
» resolvent R(z) = (Hy — z)~!

plHe) = 5= [ Pzoz0(2)A(2)

with d2z = dxdy, 0z = 9x + i9y.
Note: 0;p(z) supported near suppp C (—o0,0] Cc C
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He) = 5 [ P20e0(DA(2)

P (Ha) = —217T/d2282p(z).‘?(z)2



Sketch of proof

p(Hg) = ;T/dzzazp(z)ﬂ(z)

o (Ha) = - | #zomn(2)REF

P (Ha)[Has M] = —217 / A2 3p(2)R(2)2[Has 1]

o(Ha). ] =~ [ 2 0:0(2)R()Ha MIA(2)



Sketch of proof

P (Ha)[Ha, M] = —217 / a2z 9:p(2) R(2)?[Ha, M]

(o(Ha). ] = 5 [ 02020 A() Ha MIA(2)

p'(Ha)[Ha, M]A2 = —217 / d2z 9:p(2)R(2)?[Ha, M)Az

[,O(Ha),/\1]/\2 = —217 / dzzazp(Z)R(Z)[Ha,/\1]R(Z)/\2



Sketch of proof
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Sketch of proof

0/ (Ha)[Ha, AM]A2# — 217 / A2z 93p(2)R(2)[Ha, M]A2R(2)

lp(Ha). Mlhe =~ 5 [ 202p(2)R(@)[Ha MR,

» In first equation (RHS), move one power of R(z) to the far right.
Difference is [R(2), R(z)[Ha, M]A2]
» Second equation (LHS) is [p(Ha)A2, A1]

» Difference involves
MNR(z) — R(2)A2 = [A2, R(2)] = R(z)[Ha, \2]R(2)



The poor man’s non-commutative geometry
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(AB, BA trace class) (supp f compact)
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The poor man’s non-commutative geometry

tr[A, B] = 0 . / F(x
(AB, BA trace class) (supp f compact)

For f = X(—o0,01 - g We have f' = —5 - g + x(—0,0) - 9’ @nd

= /io g'(x)dx

.. To add the trace of a commutator is to apply a non-commutative
Stokes Theorem [,, g = [, dg



Picture of proof of o = o

To add a commutator is [, g = [, dg



Picture of proof of o = o
To add a commutatoris [,, g = [, dg

Let X be the non-commutative space (xi, X2, E).



Picture of proof of o = o
To add a commutatoris [,, g = [, dg

Let X be the non-commutative space (xi, X2, E). Shown plane x; =0



Picture of proof of o = o

To add a commutatoris [, g = [, dg | \ E
» Definition of o is \ \ TS
OE + spurious := e

— 1aI|m tr /)/(Ha)[Ha, N ]/\2

» Add

0= t((A(2), AE)Ha AN | \¥_

//W)’; Xo

(z € C near (—oo,0]) - /%/ .
» Add

= tr([p(Ha) A2, \1]) !

The operator is supported in the ; BREEEVSHERY
bulk, and equals —L il

op + spurious 5%




Chiral systems



The model (1 dimensional)
Alternating chain with nearest neighbor hopping
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The model (1 dimensional)
Alternating chain with nearest neighbor hopping

wn 1
n+1
Hilbert space: sites arranged in dimers

H—ﬁ@@%®@9¢—<¢”>
nez

Vn
0 S
(s %)
with S, S* acting on ¢?(Z,CN) as
(Sy™)n = Anl/’,;rq + By, (S 7 )n=Anp1¥pq + Boton
(An, By € GL(N) almost surely)

Hamiltonian



Chiral symmetry
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Chiral symmetry

10
(o %)
(HN}=HN+NH=0

hence
E(HN+NE_(H)=0 (E(H) spectral projection for | C R)

Energy A = 0 is special:
» Eigenprojection Py := Eqy(H) has {Po, MM} =0
Eigenspace ran P, invariant under 1

Yo vy Yo
\/%ﬁ\w/n\/
» Eigenvalue equation Hy = A\ is Sy™ = \yp—, S*¢~ = X, i.e.
A+ Bt =X, Al + By = M

is one 2nd order difference equation, but two 1st order for A =0



Bulk index

Let
Y =sgnH

Definition. The Bulk index is

’
N = 5 tr(NE[A, X))

with A = A(n) a switch function (cf. Prodan et al.)

Am%



Bulk index

Let
Y =sgnH

Definition. The Bulk index is

N:%vmﬂmﬂ) M”%f%

X
with A = A(n) a switch function (cf. Prodan et al.)

Equivalently
—N =1tr(MPL[A, P_]) + tr(NP_[A, P4])

using P+ = E(O,+oo)s P_ = E(foo,O) and ¥ = P_|_ - P_



Edge Hamiltonian and index

+
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Va

Edge Hamiltonian H; defined by restriction to n < a (Dirichlet
boundary condition v, ; = 0). Chiral symmetry preserved.
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Edge Hamiltonian and index

+
a—1 w;

Va

L

Va1 =0

Edge Hamiltonian H; defined by restriction to n < a (Dirichlet
boundary condition v, ; = 0). Chiral symmetry preserved.

Eigenspace ran Py , invariant under I1.
NG =dim{y | Hat = 0,y = b}
Definition. The Edge index is
Na=NF —Ng =tr(NPy )



A vanishing lemma

/\/ /\

a+1 =0

N =dim{y) | Hap = 0,y = o)}



A vanishing lemma

+ +
R a—1 a
\\\\ /\w_/ /O\//
a Yar1 =

N =dim{y | Hay = 0, = +4}
Eigenvalue equation Hzy = 0, i.e., two 1st order egs.
An¢:_1 + anﬁ =0, Atr+1wr7+1 + B;kﬂ/’; =0
Lemma.
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Ng =0

In particular A3 is independent of a.



A vanishing lemma

+ +
R a—1 a
\\\\ /\w_/ /O\//
a Yar1 =

N =dim{y | Hay = 0, = +4}
Eigenvalue equation Hzy = 0, i.e., two 1st order egs.
An¢:_1 + anﬁ =0, Atr+1wr7+1 + B;kﬂ/’; =0
Lemma.

NF =dim{yt:Z - CN | Syt =0,¢} is?at n— —oo}
Ng =0

In particular A\, is independent of a. Call it NV*.
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Bulk-edge duality

Theorem (G., Shapiro). Assume A = 0 lies in a mobility gap. Then
N =N

Remark. Consider the dynamical system A,ﬂpﬁh + By = 0 with
Lyaponov exponents

>
The assumption is satisfied if v; # 0; then N* = #{i | 7; > 0}

Phase boundaries correspond to +; = 0 (cf. Prodan et al.)
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Recall NV = tr(MPy )

Lemma. The common value of NV is

ﬁ _ .
N —aﬂrpootr(l'll\Po,a)



Proof

Lemma. The common value of NV is

ﬁ _ .
NF = aﬂrpoo tr(MAP, 5)
Proof of Theorem. On the Hilbert space H, correspondingto n < a

tr(MA) = N A(n)) tree M =0

n<a
0 a

though |[MA|l1 = [|A]l1 — oo, (@ — +0)



Proof

Lemma. The common value of NV is
i
N im_ tr(MAP 2)

Proof of Theorem. On the Hilbert space H, correspondingto n < a

tr(MA) =0
—
0 a

tr(MA) = tr(MAPy g) + tr(MAPy 5) + tr(MAP_ )



Proof
Lemma. The common value of NV is

NF = lim tr(NAP, )

a—-+o0o

Proof of Theorem. On the Hilbert space H, correspondingto n < a

tr(MA) =0
—
0 a

tr(MA) = tr(MAPg 4) + tr(MAPy ) + tr(MAP_ )

tr(”/\P_ha) — tr(P_i_,arI/\P_ha) - tr(rlP_7a/\P+7a)
— tr(rIP_’a[/\, P_A'_,a])



Proof
Lemma. The common value of NV is

NF = lim tr(NAP, )

a—-+o0o

Proof of Theorem. On the Hilbert space H, correspondingto n < a

tr(MA) =0
—
0 a

tr(MA) = tr(MAPg 4) + tr(MAPy ) + tr(MAP_ )

tr(n/\P_ha) == ’[I’(P_,_,aI_I/\P_,_,a) == tr(rlP_,a/\P_ha)
=1tr(MP_ a[A, Py a]) — tr(MP_[A, P4]) (a — +o0)



Proof

Lemma. The common value of NV is

NF = lim tr(NAP, )

a—-+o0o
Proof of Theorem. On the Hilbert space H, correspondingto n < a
tr(MA) =0

So,
tr(MA) = tr(MAPy o) +  tr(MAP, 2) + tr(MAP_ )

—Nt —tr(MP_[A,PL])+tr(MPL[A,P_])=—N

g.e.d.



Summary

Elementary methods used to establish bulk-edge correspondence in
simple models of topological insulators in presence of a mobility gap
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