Bulk-edge correspondence in the presence of a mobility gap

Gian Michele Graf ETH Zurich

Topological Matter, Strings, K-theory and related areas IGA/AMSI Workshop 26-30 September 2016

Adelaide

Bulk-edge correspondence in the presence of a mobility gap

Gian Michele Graf ETH Zurich

Topological Matter, Strings, K-theory and related areas IGA/AMSI Workshop 26-30 September 2016

Adelaide

based on joint work with A. Elgart, J. Schenker; J. Shapiro

Outline

Goal of the talk

Quantum Hall systems

Chiral systems

Goal of the talk

Quantum Hall systems

Chiral systems

Goals of the talk

- Difference between spectral and mobility gap
- Bulk-edge correspondence for quantum Hall Hamiltonians (2 dim)
- ► Bulk-edge correspondence for chiral Hamiltonians (1 dim)

Goal of the talk

Quantum Hall systems

Chiral systems

The experiment (von Klitzing, 1980)

Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
, $\underline{\sigma} = \begin{pmatrix} \sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\ -\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}} \end{pmatrix}$

 $\sigma_{\rm H}$: Hall conductance

 $\sigma_{\rm D}$: ohmic (dissipative) conductance

The experiment (von Klitzing, 1980)

Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
, $\underline{\sigma} = \begin{pmatrix} \sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\ -\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}} \end{pmatrix}$

 $\sigma_{\rm H}$: Hall conductance

 $\sigma_{\rm D}$: ohmic (dissipative) conductance

The experiment (von Klitzing, 1980)

Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
, $\underline{\sigma} = \begin{pmatrix} \sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\ -\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}} \end{pmatrix}$

 $\sigma_{\rm H}$: Hall conductance

 $\sigma_{\rm D}$: ohmic (dissipative) conductance

Width of plateaus increases with disorder

The spectrum of a single-particle Hamiltonian

The spectrum of a single-particle Hamiltonian

• (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise

The spectrum of a single-particle Hamiltonian

- (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise
- ▶ Hall conductance $\sigma_H(\mu)$ is constant for μ in a Mobility Gap

The spectrum of a single-particle Hamiltonian

- (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise
- ▶ Hall conductance $\sigma_H(\mu)$ is constant for μ in a Mobility Gap

Mobility gap, technically speaking

Hamiltonian H_B on $\ell^2(\mathbb{Z}^d)$ $P_\mu = E_{(-\infty,\mu)}(H_B)$ Fermi projection,

Assumption. Fermi projection has strong off-diagonal decay:

$$\sup_{x'} e^{-\varepsilon |x'|} \sum_{x} e^{\nu |x-x'|} |P_{\mu}(x,x')| < \infty$$

(some $\nu > 0$, all $\varepsilon > 0$)

Mobility gap, technically speaking

Hamiltonian H_B on $\ell^2(\mathbb{Z}^d)$ $P_\mu = E_{(-\infty,\mu)}(H_B)$ Fermi projection,

Assumption. Fermi projection has strong off-diagonal decay:

$$\sup_{x'} e^{-\varepsilon |x'|} \sum_{x} e^{\nu |x-x'|} |P_{\mu}(x,x')| < \infty$$

(some $\nu > 0$, all $\varepsilon > 0$)

- ightharpoonup Trivially true for H_B a multiplication operator in position space
- ▶ Trivially false for H_B a function of momentum $(P_\mu(x,0) \sim |x|^{-d})$
- Proven in (virtually) all cases where localization is known.

IQHE as a Bulk effect

Paradigm: Cyclotron orbit drifting under a electric field \vec{E}

Hamiltonian H_B in the plane. Kubo formula (linear response to \vec{E})

$$\sigma_{\mathrm{B}} = \mathrm{i}\,\mathrm{tr}\,P_{\mu}ig[[P_{\mu},\Lambda_{1}],[P_{\mu},\Lambda_{2}]ig]$$

where

$$\Lambda_i = \Lambda(x_i)$$
, $(i = 1, 2)$ switches

IQHE as a Bulk effect (remarks)

$$\sigma_{\mathrm{B}} = \mathrm{i} \operatorname{tr} P_{\mu} \big[[P_{\mu}, \Lambda_{1}], [P_{\mu}, \Lambda_{2}] \big]$$

where $\Lambda_i = \Lambda(x_i)$, (i = 1, 2) switches. Supports of $\vec{\nabla} \Lambda_i$:

Remark. The trace is well-defined. Roughly: An operator has a well-defined trace if it acts non-trivially on finitely many states only. Here the intersection contains only finitely many sites.

IQHE as an edge effect (spectral gap)

Hamiltonian H_E on the upper half-plane: restriction of H_B through boundary conditions at $x_2 = 0$.

State $\rho(H_E)$: 1-particle density matrix, e.g. $\rho(H_E) = E_{(-\infty,\mu)}(H_E)$, or (actually) smooth

IQHE as an edge effect (spectral gap)

Hamiltonian H_E on the upper half-plane: restriction of H_B through boundary conditions at $x_2 = 0$.

State $\rho(H_E)$: 1-particle density matrix, e.g. $\rho(H_E) = E_{(-\infty,\mu)}(H_E)$, or (actually) smooth

Current operator across $x_1 = 0$: $i[H_E, \Lambda_1]$

$$I = i \operatorname{tr}(\rho(H_E + V) - \rho(H_E))[H_E, \Lambda_1]$$

As $V \rightarrow$ 0: $I/V \rightarrow \sigma_E$

$$\sigma_{\rm E} = i \operatorname{tr}(\rho'(H_E)[H_E, \Lambda_1])$$

Equality of conductances

Theorem (Schulz-Baldes, Kellendonk, Richter). Ergodic setting. If the Fermi energy μ lies in a Spectral Gap of H_B , then

$$\sigma_{\rm E} = \sigma_{\rm B}$$
.

In particular, σ_E does not depend on ρ' , nor on boundary conditions.

ls

$$\sigma_{\rm E} = -i \operatorname{tr}(\rho'(H_E)[H_E, \Lambda_1])$$

well-defined?

ls

$$\sigma_{\rm E} = -i \operatorname{tr}(\rho'(H_E)[H_E, \Lambda_1])$$

well-defined?

 \therefore the definition of σ_E needs to be changed in case of a Mobility Gap!

 \therefore the definition of σ_E needs to be changed in case of a Mobility Gap! Guiding principle: Localized states should not contribute to the edge current

 \cdot the definition of σ_E needs to be changed in case of a Mobility Gap!

Analogy: Electrodynamics of continuous media

$$\vec{j} = \vec{j}_F + \text{curl } \vec{M} \equiv \text{free} + \text{molecular currents}$$

Localized states should not contribute to the (free) edge current

Equality of conductances

For a suitable definition of σ_E :

Theorem (Elgart, G., Schenker). If supp ρ' lies in a Mobility Gap, then

$$\sigma_{\rm E} = \sigma_{\rm B}$$

In particular σ_E does not depend on ρ' , nor on boundary conditions.

Definition of $\sigma_{\rm E}$ in case of a Mobility Gap

*X*₂ ↑

Replace H_E to H_a (a > 0) as follows

▶ Current across the portion \bigcirc of $x_1 = 0$:

$$-i \operatorname{tr}(\rho'(H_a)[H_a, \Lambda_1]\Lambda_2)$$
 (exists!)

Current across the portion ::

Definition of $\sigma_{\rm E}$ in case of a Mobility Gap

Replace H_E to H_a (a > 0) as follows

▶ Current across the portion \bigcirc of $x_1 = 0$:

$$-i \operatorname{tr}(\rho'(H_a)[H_a, \Lambda_1]\Lambda_2)$$
 (exists!)

▶ Current across the portion \square : In the limit $a \to \infty$ pretend that

$$\rho'(H_{a}) \leadsto \rho'(H_{B}) = \sum_{\lambda} \rho'(\lambda) \psi_{\lambda}(\psi_{\lambda}, \cdot)$$

(sum over eigenvalues λ of H_B : $H_B\psi_\lambda=\lambda\psi_\lambda$)

$$(\psi_{\lambda}, [H_{B}, \Lambda_{1}](1 - \Lambda_{2})\psi_{\lambda}) = -(\psi_{\lambda}, [H_{B}, \Lambda_{1}]\Lambda_{2}\psi_{\lambda})$$

Definition of $\sigma_{\rm E}$ in case of a Mobility Gap

Replace H_E to H_a (a > 0) as follows

▶ Current across the portion \blacksquare of $x_1 = 0$:

$$-i \operatorname{tr}(\rho'(H_a)[H_a, \Lambda_1]\Lambda_2)$$
 (exists!)

▶ Current across the portion \blacksquare : In the limit $a \to \infty$ pretend that

$$\rho'(H_{a}) \leadsto \rho'(H_{B}) = \sum_{\lambda} \rho'(\lambda) \psi_{\lambda}(\psi_{\lambda}, \cdot)$$

(sum over eigenvalues λ of H_B : $H_B\psi_\lambda=\lambda\psi_\lambda$)

$$(\psi_{\lambda}, [H_{B}, \Lambda_{1}](1 - \Lambda_{2})\psi_{\lambda}) = -(\psi_{\lambda}, [H_{B}, \Lambda_{1}]\Lambda_{2}\psi_{\lambda})$$

Together:

$$\begin{split} \sigma_{E} &= \lim_{a \to \infty} -\mathrm{i} \, \text{tr}(\rho'(H_{a})[H_{a}, \Lambda_{1}] \Lambda_{2}) + \\ &+ \mathrm{i} \sum_{\lambda} \rho'(\lambda) (\psi_{\lambda}, [H_{B}, \Lambda_{1}] \Lambda_{2} \psi_{\lambda}) \end{split}$$

Sketch of proof of $\sigma_{\rm E} = \sigma_{\rm B}$

Technical tool: Representation of $\rho(H_a)$ by

- ▶ quasi-analytic extension $\rho(z)$, $(z = x + iy \in \mathbb{C})$
- ▶ resolvent $R(z) = (H_a z)^{-1}$

Sketch of proof of $\sigma_{\rm E} = \sigma_{\rm B}$

Technical tool: Representation of $\rho(H_a)$ by

- ▶ quasi-analytic extension $\rho(z)$, $(z = x + iy \in \mathbb{C})$
- resolvent $R(z) = (H_a z)^{-1}$

$$\rho(H_a) = \frac{1}{2\pi} \int_{\mathbb{C}} d^2 z \, \partial_{\bar{z}} \rho(z) R(z)$$

with $d^2z = dxdy$, $\partial_{\bar{z}} = \partial_x + i\partial_y$.

Note: $\partial_{\overline{z}}\rho(z)$ supported near supp $\rho\subset (-\infty,0]\subset \mathbb{C}$

$$R(z) = (H_a - z)^{-1}$$

$$\rho(H_a) = \frac{1}{2\pi} \int d^2z \, \partial_{\bar{z}} \rho(z) R(z)$$

$$\rho'(H_a) = -\frac{1}{2\pi} \int d^2z \, \partial_{\bar{z}} \rho(z) R(z)^2$$

$$\rho(H_a) = \frac{1}{2\pi} \int d^2z \, \partial_{\bar{z}} \rho(z) R(z)$$
$$\rho'(H_a) = -\frac{1}{2\pi} \int d^2z \, \partial_{\bar{z}} \rho(z) R(z)^2$$

$$\rho(H_a) = \frac{1}{2\pi} \int d^2 z \, \partial_{\bar{z}} \rho(z) R(z)$$
$$\rho'(H_a) = -\frac{1}{2\pi} \int d^2 z \, \partial_{\bar{z}} \rho(z) R(z)^2$$

$$\rho'(H_a)[H_a, \Lambda_1] = -\frac{1}{2\pi} \int d^2z \, \partial_{\overline{z}} \rho(z) R(z)^2 [H_a, \Lambda_1]$$
$$[\rho(H_a), \Lambda_1] = -\frac{1}{2\pi} \int d^2z \, \partial_{\overline{z}} \rho(z) R(z) [H_a, \Lambda_1] R(z)$$

$$\rho'(H_a)[H_a, \Lambda_1] = -\frac{1}{2\pi} \int d^2z \, \partial_{\overline{z}} \rho(z) R(z)^2 [H_a, \Lambda_1]$$
$$[\rho(H_a), \Lambda_1] = -\frac{1}{2\pi} \int d^2z \, \partial_{\overline{z}} \rho(z) R(z) [H_a, \Lambda_1] R(z)$$

$$\rho'(H_a)[H_a, \Lambda_1]\Lambda_2 = -\frac{1}{2\pi} \int d^2z \, \partial_{\overline{z}} \rho(z) R(z)^2 [H_a, \Lambda_1] \Lambda_2$$
$$[\rho(H_a), \Lambda_1]\Lambda_2 = -\frac{1}{2\pi} \int d^2z \, \partial_{\overline{z}} \rho(z) R(z) [H_a, \Lambda_1] R(z) \Lambda_2$$

$$\rho'(H_a)[H_a, \Lambda_1]\Lambda_2 = -\frac{1}{2\pi} \int d^2z \, \partial_{\bar{z}} \rho(z) R(z)^2 [H_a, \Lambda_1] \Lambda_2$$
$$[\rho(H_a), \Lambda_1]\Lambda_2 = -\frac{1}{2\pi} \int d^2z \, \partial_{\bar{z}} \rho(z) R(z) [H_a, \Lambda_1] R(z) \Lambda_2$$

$$\rho'(H_a)[H_a, \Lambda_1]\Lambda_2 \neq -\frac{1}{2\pi} \int d^2z \, \partial_{\bar{z}} \rho(z) R(z)[H_a, \Lambda_1]\Lambda_2 R(z)$$
$$[\rho(H_a), \Lambda_1]\Lambda_2 = -\frac{1}{2\pi} \int d^2z \, \partial_{\bar{z}} \rho(z) R(z)[H_a, \Lambda_1]R(z)\Lambda_2$$

In first equation (RHS), move one power of R(z) to the far right. Difference is [R(z), R(z)[H_a, Λ₁]Λ₂]

Sketch of proof

$$\rho'(H_a)[H_a, \Lambda_1]\Lambda_2 \neq -\frac{1}{2\pi} \int d^2z \, \partial_{\bar{z}} \rho(z) R(z)[H_a, \Lambda_1]\Lambda_2 R(z)$$
$$[\rho(H_a), \Lambda_1]\Lambda_2 = -\frac{1}{2\pi} \int d^2z \, \partial_{\bar{z}} \rho(z) R(z)[H_a, \Lambda_1]R(z)\Lambda_2$$

- ▶ In first equation (RHS), move one power of R(z) to the far right. Difference is $[R(z), R(z)[H_a, \Lambda_1]\Lambda_2]$
- Second equation (LHS) is [ρ(H_a)Λ₂, Λ₁]

Sketch of proof

$$\rho'(H_a)[H_a, \Lambda_1]\Lambda_2 \neq -\frac{1}{2\pi} \int d^2z \, \partial_{\overline{z}} \rho(z) R(z)[H_a, \Lambda_1]\Lambda_2 R(z)$$
$$[\rho(H_a), \Lambda_1]\Lambda_2 = -\frac{1}{2\pi} \int d^2z \, \partial_{\overline{z}} \rho(z) R(z)[H_a, \Lambda_1] R(z)\Lambda_2$$

- ▶ In first equation (RHS), move one power of R(z) to the far right. Difference is $[R(z), R(z)[H_a, \Lambda_1]\Lambda_2]$
- ▶ Second equation (LHS) is $[\rho(H_a)\Lambda_2, \Lambda_1]$
- ▶ Difference involves $\Lambda_2 R(z) R(z)\Lambda_2 = [\Lambda_2, R(z)] = R(z)[H_a, \Lambda_2]R(z)$

The poor man's non-commutative geometry

$$tr[A, B] = 0$$
 \longleftrightarrow $\int f'(x)dx = 0$ (supp f compact)

The poor man's non-commutative geometry

$$tr[A, B] = 0$$
 \longleftrightarrow $\int f'(x)dx = 0$ (supp f compact)

For
$$f = \chi_{(-\infty,0]} \cdot g$$
 we have $f' = -\delta \cdot g + \chi_{(-\infty,0]} \cdot g'$ and

$$g(0) = \int_{-\infty}^{0} g'(x) dx$$

The poor man's non-commutative geometry

$$tr[A, B] = 0$$
 \longleftrightarrow $\int f'(x)dx = 0$ (supp f compact)

For $f = \chi_{(-\infty,0]} \cdot g$ we have $f' = -\delta \cdot g + \chi_{(-\infty,0]} \cdot g'$ and

$$g(0) = \int_{-\infty}^{0} g'(x) dx$$

 \therefore To add the trace of a commutator is to apply a non-commutative Stokes Theorem $\int_{\partial X} g = \int_{X} dg$

Picture of proof of $\sigma_{\rm E} = \sigma_{\rm B}$

To add a commutator is $\int_{\partial X} g = \int_X dg$

Picture of proof of $\sigma_{\rm E} = \sigma_{\rm B}$

To add a commutator is $\int_{\partial X} g = \int_X dg$

Let *X* be the non-commutative space (x_1, x_2, E) .

Picture of proof of $\sigma_{\rm E} = \sigma_{\rm B}$

To add a commutator is $\int_{\partial X} g = \int_X dg$

Let X be the non-commutative space (x_1, x_2, E) . Shown plane $x_1 = 0$

Picture of proof of $\sigma_{\rm E}=\sigma_{\rm B}$

To add a commutator is $\int_{\partial X} g = \int_X dg$

- ▶ Definition of σ_E is $\sigma_E + \text{spurious} :=$ $\text{i} \lim_{a \to \infty} \text{tr } \rho'(H_a)[H_a, \Lambda_1] \Lambda_2$
- Add

$$0=\operatorname{tr}([R(z),R(z)[H_a,\Lambda_1]\Lambda_2])$$
 $(z\in\mathbb{C}\ \operatorname{near}\ (-\infty,0])$

Add

$$0 = \operatorname{tr}([\rho(H_a)\Lambda_2, \Lambda_1])$$

The operator is supported in the bulk, and equals

$$\sigma_{\rm B} + {\rm spurious}$$

Goal of the talk

Quantum Hall systems

Chiral systems

The model (1 dimensional)

Alternating chain with nearest neighbor hopping

The model (1 dimensional)

Alternating chain with nearest neighbor hopping

Hilbert space: sites arranged in dimers

$$\mathcal{H} = \ell^2(\mathbb{Z}, \mathbb{C}^N) \otimes \mathbb{C}^2 \ni \psi = \begin{pmatrix} \psi_n^+ \\ \psi_n^- \end{pmatrix}_{n \in \mathbb{Z}}$$

Hamiltonian

$$H = \left(\begin{array}{cc} 0 & S^* \\ S & 0 \end{array}\right)$$

with S, S^* acting on $\ell^2(\mathbb{Z}, \mathbb{C}^N)$ as

$$(S\psi^+)_n = A_n\psi_{n-1}^+ + B_n\psi_n^+, \qquad (S^*\psi^-)_n = A_{n+1}^*\psi_{n+1}^- + B_n^*\psi_n^-$$

 $(A_n, B_n \in GL(N))$ almost surely)

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\{H, \Pi\} \equiv H\Pi + \Pi H = 0$$

hence

$$E_I(H)\Pi + \Pi E_{-I}(H) = 0$$
 ($E_I(H)$ spectral projection for $I \subset \mathbb{R}$)

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\{H, \Pi\} \equiv H\Pi + \Pi H = 0$$

hence

$$E_I(H)\Pi + \Pi E_{-I}(H) = 0$$
 $(E_I(H) \text{ spectral projection for } I \subset \mathbb{R})$

Energy $\lambda = 0$ is special:

▶ Eigenprojection $P_0 := E_{\{0\}}(H)$ has $\{P_0, \Pi\} = 0$

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\{H, \Pi\} \equiv H\Pi + \Pi H = 0$$

hence

$$E_I(H)\Pi + \Pi E_{-I}(H) = 0$$
 $(E_I(H) \text{ spectral projection for } I \subset \mathbb{R})$

Energy $\lambda = 0$ is special:

► Eigenprojection $P_0 := E_{\{0\}}(H)$ has $\{P_0, \Pi\} = 0$ Eigenspace ran P_0 invariant under Π

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\{H, \Pi\} \equiv H\Pi + \Pi H = 0$$

hence

$$E_I(H)\Pi + \Pi E_{-I}(H) = 0$$
 $(E_I(H) \text{ spectral projection for } I \subset \mathbb{R})$

Energy $\lambda = 0$ is special:

► Eigenprojection $P_0 := E_{\{0\}}(H)$ has $\{P_0, \Pi\} = 0$ Eigenspace ran P_0 invariant under Π

▶ Eigenvalue equation $H\psi = \lambda \psi$ is $S\psi^+ = \lambda \psi^-$, $S^*\psi^- = \lambda \psi^+$, i.e.

$$A_n \psi_{n-1}^+ + B_n \psi_n^+ = \lambda \psi_n^-, \qquad A_{n+1}^* \psi_{n+1}^- + B_n^* \psi_n^- = \lambda \psi_n^+$$

is one 2nd order difference equation, but two 1st order for $\lambda = 0$

Bulk index

Let

$$\Sigma = \operatorname{sgn} H$$

Definition. The Bulk index is

$$\mathcal{N} = \frac{1}{2} \, \text{tr}(\Pi \Sigma [\Lambda, \Sigma])$$

with $\Lambda = \Lambda(n)$ a switch function (cf. Prodan et al.)

Bulk index

Let

$$\Sigma = \operatorname{sgn} H$$

Definition. The Bulk index is

$$\mathcal{N} = \frac{1}{2} \, \text{tr}(\Pi \Sigma [\Lambda, \Sigma])$$

with $\Lambda = \Lambda(n)$ a switch function (cf. Prodan et al.)

Equivalently

$$-\mathcal{N} = \operatorname{tr}(\Pi P_{+}[\Lambda, P_{-}]) + \operatorname{tr}(\Pi P_{-}[\Lambda, P_{+}])$$

using
$$P_+:=E_{(0,+\infty)},\,P_-:=E_{(-\infty,0)}$$
 and $\Sigma=P_+-P_-$

Edge Hamiltonian H_a defined by restriction to $n \le a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved.

Edge Hamiltonian H_a defined by restriction to $n \le a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved.

Eigenspace $ran P_{0,a}$ invariant under Π .

Edge Hamiltonian H_a defined by restriction to $n \le a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved.

Eigenspace ran $P_{0,a}$ invariant under Π .

$$\mathcal{N}_{a}^{\pm} := \dim\{\psi \mid \mathcal{H}_{a}\psi = 0, \Pi\psi = \pm\psi\}$$

Edge Hamiltonian H_a defined by restriction to $n \le a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved.

Eigenspace ran $P_{0,a}$ invariant under Π.

$$\mathcal{N}_{a}^{\pm} := \dim\{\psi \mid \mathcal{H}_{a}\psi = 0, \Pi\psi = \pm\psi\}$$

Definition. The Edge index is

$$\mathcal{N}_a = \mathcal{N}_a^+ - \mathcal{N}_a^- = \operatorname{tr}(\Pi P_{0,a})$$

A vanishing lemma

A vanishing lemma

$$\mathcal{N}_{a}^{\pm} = \dim\{\psi \mid \mathcal{H}_{a}\psi = 0, \Pi\psi = \pm\psi\}$$

Eigenvalue equation $H_a\psi=0$, i.e., two 1st order eqs.

$$A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0, \qquad A_{n+1}^*\psi_{n+1}^- + B_n^*\psi_n^- = 0$$

Lemma.

$$\mathcal{N}_a^+ = \dim\{\psi^+ : \mathbb{Z} \to \mathbb{C}^N \mid S\psi^+ = 0, \psi_n^+ \text{ is } \ell^2 \text{ at } n \to -\infty\}$$

 $\mathcal{N}_a^- = 0$

In particular \mathcal{N}_a is independent of a.

A vanishing lemma

$$\mathcal{N}_{a}^{\pm} = \dim\{\psi \mid \mathcal{H}_{a}\psi = 0, \Pi\psi = \pm\psi\}$$

Eigenvalue equation $H_a\psi=0$, i.e., two 1st order eqs.

$$A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0, \qquad A_{n+1}^*\psi_{n+1}^- + B_n^*\psi_n^- = 0$$

Lemma.

$$\mathcal{N}_a^+ = \dim\{\psi^+ : \mathbb{Z} \to \mathbb{C}^N \mid S\psi^+ = 0, \psi_n^+ \text{ is } \ell^2 \text{ at } n \to -\infty\}$$

 $\mathcal{N}_a^- = 0$

In particular \mathcal{N}_a is independent of a. Call it \mathcal{N}^{\sharp} .

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Remark. Consider the dynamical system $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$ with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^{\sharp} = \sharp \{i \mid \gamma_i > 0\}$

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Remark. Consider the dynamical system $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$ with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^{\sharp} = \sharp \{i \mid \gamma_i > 0\}$

Phase boundaries correspond to $\gamma_i = 0$ (cf. Prodan et al.)

Recall
$$\mathcal{N}_a = \operatorname{tr}(\Pi P_{0,a})$$

Recall
$$\mathcal{N}_a = \operatorname{tr}(\Pi P_{0,a})$$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a o +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

$$\operatorname{tr}(\Pi \wedge) = N(\sum_{n \leq a} \Lambda(n)) \operatorname{tr}_{\mathbb{C}^2} \Pi = 0$$

though
$$\|\Pi\Lambda\|_1 = \|\Lambda\|_1 \to \infty$$
, $(a \to +\infty)$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

$$\operatorname{tr}(\Pi \wedge) = 0$$

$$\operatorname{tr}(\Pi\Lambda) = \operatorname{tr}(\Pi\Lambda P_{0,a}) + \operatorname{tr}(\Pi\Lambda P_{+,a}) + \operatorname{tr}(\Pi\Lambda P_{-,a})$$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

$$\operatorname{tr}(\Pi \wedge) = 0$$

$$tr(\Pi\Lambda) = tr(\Pi\Lambda P_{0,a}) + tr(\Pi\Lambda P_{+,a}) + tr(\Pi\Lambda P_{-,a})$$

$$\operatorname{tr}(\Pi \Lambda P_{+,a}) = \operatorname{tr}(P_{+,a} \Pi \Lambda P_{+,a}) = \operatorname{tr}(\Pi P_{-,a} \Lambda P_{+,a})$$
$$= \operatorname{tr}(\Pi P_{-,a} [\Lambda, P_{+,a}])$$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

$$\operatorname{tr}(\Pi \wedge) = 0$$

$$tr(\Pi\Lambda) = tr(\Pi\Lambda P_{0,a}) + tr(\Pi\Lambda P_{+,a}) + tr(\Pi\Lambda P_{-,a})$$

$$\begin{aligned} \operatorname{tr}(\Pi \Lambda P_{+,a}) &= \operatorname{tr}(P_{+,a} \Pi \Lambda P_{+,a}) = \operatorname{tr}(\Pi P_{-,a} \Lambda P_{+,a}) \\ &= \operatorname{tr}(\Pi P_{-,a} [\Lambda, P_{+,a}]) \to \operatorname{tr}(\Pi P_{-} [\Lambda, P_{+}]) \qquad (a \to +\infty) \end{aligned}$$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

Proof of Theorem. On the Hilbert space \mathcal{H}_a corresponding to $n \leq a$

$$tr(\Pi \Lambda) = 0$$

$$tr(\Pi\Lambda) = \underbrace{tr(\Pi\Lambda P_{0,a})}_{\rightarrow \mathcal{N}^{\sharp}} + \underbrace{tr(\Pi\Lambda P_{+,a}) + tr(\Pi\Lambda P_{-,a})}_{\rightarrow tr(\Pi P_{-}[\Lambda, P_{+}]) + tr(\Pi P_{+}[\Lambda, P_{-}]) = -\Lambda}$$

q.e.d.

Summary

Elementary methods used to establish bulk-edge correspondence in simple models of topological insulators in presence of a mobility gap