Topological nature of the Fu-Kane-Mele invariants

Giuseppe De Nittis

(Pontificia Universidad Católica)

Topological Matter, Strings, K-theory and related areas

Adelaide, Australia • September 26 - 30, 2016

<u>In collaboration with</u>: K. Gomi (Shinshu Univ.)

<u>Source</u>: arXiv:1603.09421

FONDECYT

Fondo Nacional de Desarrollo Científico y Tecnológico

1. Time reversal symmetries and "Quaternionic" structures

2. The role of the (involutive) base space

3. In the search of a classifying object

4. FKMM vs. Fu-Kane-Mele

Topological Quantum Systems with odd TRS's

Let **B** a topological space, ("Brillouin zone"). Assume that:

• **B** is a CW-complex (compact, Hausdorff and path-connected);

DEFINITION (Topological Quantum System (TQS)**)**

Let \mathcal{H} be a separable Hilbert space and $\mathcal{K}(\mathcal{H})$ the algebra of compact operators. A **TQS** is a self-adjoint map

$$\mathbb{B} \ni k \longmapsto H(k) = H(k)^* \in \mathcal{K}(\mathcal{H})$$

continuous with respect to the norm-topology.

The spectrum $\sigma(H(k)) = \{ E_j(k) \mid j \in \mathcal{I} \subseteq \mathbb{Z} \} \subset \mathbb{R}$, is a sequence of eigenvalues ordered according to

 $\dots \underline{E}_{-2}(k) \leqslant \underline{E}_{-1}(k) < 0 \leqslant \underline{E}_{1}(k) \leqslant \underline{E}_{2}(k) \leqslant \dots$

The maps $k \mapsto E_j(k)$ are **continuous** (energy bands) ...

Topological Quantum Systems with odd TRS's

... namely a band spectrum

$$H(k) \psi_j(k) = E_j(k) \psi_j(k), \qquad k \in \mathbb{B}$$

Isually an energy gap separates the filled valence bands from the empty conduction bands. The Fermi level E_F characterizes the gap.

Topological Quantum Systems with odd TRS's

A homeomorphism $\tau : \mathbb{B} \to \mathbb{B}$ is called **involution** if $\tau^2 = \mathrm{Id}_{\mathbb{B}}$. The pair (\mathbb{B}, τ) is called an **involutive space** and $\mathbb{B}^{\tau} \subset \mathbb{B}$ is the subsetset of **invariant points**. Each space \mathbb{B} admits (at least) the **trivial involution** $\tau_{\mathrm{triv}} := \mathrm{Id}_{\mathbb{B}}$.

DEFINITION (TQS with time-reversal symmetry**)**

Let (\mathbb{B}, τ) be an involutive space, \mathcal{H} a separable Hilbert space endowed with a **complex conjugation** C. A TQS $\mathbb{B} \ni k \mapsto H(k)$ has a **time-reversal symmetry** (TRS) of parity $\eta \in \{\pm 1\}$ if there is a continuous unitary-valued map $k \mapsto U(k)$ such that

 $U(k) H(k) U(k)^* = C H(\tau(k)) C$, $C U(\tau(k)) C = \eta U(k)^*$.

A TQS with an odd TRS (i.e. $\eta = -1$) is called of class **All**.

The Serre-Swan construction

An isolated family of energy bands is any (finite) collection
{E_{j1}(·),..., E_{jm}(·)} of energy bands such that

$$\min_{k\in\mathbb{B}} \operatorname{dist}\left(\bigcup_{s=1}^{m} \{E_{j_s}(k)\}, \bigcup_{j\in\mathcal{I}\setminus\{j_1,\ldots,j_m\}}\{E_j(k)\}\right) = C_g > 0.$$

This is usually called gap condition.

• An isolated family is described by the Fermi projection

$$P_{\mathcal{F}}(k) := \sum_{s=1}^{m} |\psi_{j_s}(k)\rangle\langle\psi_{j_s}(k)|.$$

This is a continuous projection-valued map

 $\mathbb{B} \ni k \longmapsto P_{F}(k) \in \mathcal{K}(\mathcal{H}).$

(日) 《四 》 《三 》 《三 》 《 国 》 《 日)

The Serre-Swan construction

 $^{\hbox{\tiny \tiny I\!\!\tiny I\!\!\tiny S}}$ For each $k\in\mathbb{B}$

 $\mathcal{H}_{k} := \operatorname{Ran} P_{F}(k) \subset \mathcal{H}$

is a subspace of \mathcal{H} of *fixed* dimension *m*.

The collection

$$\mathcal{E}_{F} := \bigsqcup_{k \in \mathbb{B}} \mathcal{H}_{k}$$

is a topological space (said total space) and the map

 $\pi: \mathcal{E}_{\mathsf{F}} \longrightarrow \mathbb{B}$

defined by $\pi(\mathbf{k}, \mathbf{v}) = \mathbf{k}$ is continuous (and open).

This is a (rank-m) complex vector bundle called Bloch-bundle.

The Serre-Swan construction

An odd TRS induces a "Quaternionic" structure on the Bloch-bundle.

DEFINITION (Atiyah, 1966 - Dupont, 1969)

Let (\mathbb{B}, τ) be an involutive space and $\mathscr{E} \to \mathbb{B}$ a **complex** vector bundle. Let $\Theta : \mathscr{E} \to \mathscr{E}$ an **homeomorphism** such that

$$\Theta : \mathscr{E}|_k \longrightarrow \mathscr{E}|_{\tau(k)}$$
 is **anti**-linear.

 $[\mathcal{R}]$ - The pair (\mathscr{E}, Θ) is a "Real"-bundle over (\mathbb{B}, τ) if

$$\Theta^2 : \mathscr{E}|_k \xrightarrow{+1} \mathscr{E}|_k \qquad \forall k \in \mathbb{B};$$

 $[\mathcal{Q}]$ - The pair (\mathscr{E}, Θ) is a **"Quaternionic"**-bundle over (\mathbb{B}, τ) if

$$\Theta^2 : \mathscr{E}|_k \xrightarrow{-1} \mathscr{E}|_k \qquad \forall \ k \in \mathbb{B} .$$

DEFINITION (Topological phases)

Let $\mathbb{B} \ni k \mapsto H(k)$ be an odd TR-symmetric TQS with an isolated family of m energy bands and associated "Quaternionic" Bloch bundle $\mathcal{E}_F \longrightarrow \mathbb{B}$. The topological phase of the system is specified by

 $[(\mathcal{E}_{\mathcal{F}},\Theta)] \in \operatorname{Vec}_{\mathcal{Q}}^{m}(\mathbb{B},\tau).$

 $\Downarrow \Downarrow \Downarrow \Downarrow$

Main Question:

How to classify $\operatorname{Vec}_{\mathcal{O}}^{m}(\mathbb{B},\tau)$ at least for **low-dimensional** \mathbb{B} ?

Known results for $\dim(\mathbb{B}) \leqslant 3$

•
$$\operatorname{Vec}^{m}_{\mathbb{C}}(\mathbb{B}) \stackrel{c_{1}}{\simeq} H^{2}(\mathbb{B},\mathbb{Z})$$

•
$$\operatorname{Vec}_{\mathcal{R}}^{m}(\mathbb{B},\tau) \stackrel{\mathcal{C}_{1}^{\kappa}}{\simeq} H^{2}_{\mathbb{Z}_{2}}(\mathbb{B},\mathbb{Z}(1))$$

(Kahn, 1987 - D. & Gomi, 2014)

(Peterson, 1959)

CAZ	TRS	Category	VB
A	0	complex	$\operatorname{Vec}^m_{\mathbb{C}}(\mathbb{B})$
AI	+	"Real"	$\operatorname{Vec}_{\mathcal{R}}^{m}(\mathbb{B}, \tau)$
AII	_	"Quaternionic"	$\operatorname{Vec}_{\mathcal{Q}}^{m}(\mathbb{B},\tau)$

1. Time reversal symmetries and "Quaternionic" structures

2. The role of the (involutive) base space

3. In the search of a classifying object

4. FKMM vs. Fu-Kane-Mele

Electrons in a periodic environment

- **Periodic** quantum systems (e.g. absence of **disorder**):
 - \mathbb{R}^d -translations \Rightarrow free (Dirac) fermions;
 - \mathbb{Z}^d -translations \Rightarrow crystal (Bloch) fermions.
- The Bloch-Floquet (or Fourier) theory exploits the invariance under translations of a periodic structure to describe the state of the system in terms of the *quasi-momentum k* on the *Brillouin zone* B.
- Complex conjugation (TRS) endows ${\mathbb B}$ with an involution au.
- Examples are:
 - Gapped electronic systems,
 - BdG superconductors,
 - Photonic crystals (M. Lein talk).

Continuous case $\mathbb{B} \equiv \mathbb{S}^{1,d}$

500

$$\begin{array}{l} \textbf{Periodic case } \mathbb{B} \ \equiv \ \mathbb{T}^{0, d, 0} \\ \mathbb{S}^{1, 1} \times \ldots \times \mathbb{S}^{1, 1} \xrightarrow{\tau_d := \theta_{1, 1} \times \ldots \times \theta_{1, 1}} \mathbb{S}^{1, 1} \times \ldots \times \mathbb{S}^{1, 1} \end{array}$$

$$\mathbb{T}^{\mathbf{0},\mathbf{d},\mathbf{0}} := \underbrace{\mathbb{S}^{\mathbf{1},\mathbf{1}} \times \ldots \times \mathbb{S}^{\mathbf{1},\mathbf{1}}}_{\mathbf{d} - times} = (\mathbb{T}^{\mathbf{d}},\tau_{\mathbf{d}})$$

《日》《聞》《臣》《臣》 [臣 _ 今への

Topological states for Bloch electrons

	<i>d</i> = 1	<i>d</i> = 2	<i>d</i> = 3	<i>d</i> = 4	
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{1,d})$	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	Free
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{T}^{0,d,0})$	0	\mathbb{Z}_2	\mathbb{Z}_2^4	$\mathbb{Z}_2^{10}\oplus\mathbb{Z}$	Periodic

First proof for d = 1, 2 due to Fu, Kane and Mele (2005 - 2007) based on the

Fu-Kane-Mele index :=
$$\prod_{k_i \in \mathbb{B}^{ op}} rac{\sqrt{\det[W(k_i)]}}{\Pr[W(k_i)]}$$

Here $\mathbb{B}^{\tau} \ni k \mapsto W(k)$ is an antisymmetric matrix built from the Bloch functions.

!! It makes sense only when \mathbb{B}^{τ} is finite !!

Topological states for Bloch electrons

An afterwards ...

- Computed by Kitaev (2009) for all d by K-theory (stable range).
- "Handmade" frame construction for the case T^{0,2,0} by Graf and Porta (2013) and for the case T^{0,3,0} by Fiorenza, Monaco and Panati (2016) and Cornean, Monaco and Teufel (2016).
- D. and Schulz-Baldes (2015) with spectral flux (disorder).
- Kennedy and Zirnbauer (2015) by the calculation of the equivariant homotopy (very general but hard to compute).
- D. and Gomi (2015) by the introduction of the FKMM-invariant (a characteristic class) and the computation of the equivariant cohomology (very general and not so hard to compute).

Why more general involutive spaces?

The external triggering:

B can be interpreted as the space of **control parameters** for a quantum system **adiabatically perturbed**.

The Born-Oppenheimer approximation:

Many systems depend by **slow** and **fast** degrees of freedom (e.g. the Molecular Dynamics). Under certain conditions the slow and fast variables **decouple adiabatically** (i.e. the fast variables **adjust instantly** to changes of the slow variables). As a consequence, the fast dynamics is described by an **effective Hamiltonian** which depends by the slow (**classical**) degrees of freedom. "De facto" one is in a situation described by a **TQS**

$X \ni (q,p) \longmapsto H_{\text{fast}}(q,p)$

with X the classical phase space. The TR symmetry acts on the classical variables and induces an involution on the space X.

Why more general involutive spaces?

- Therefore (\mathbb{B}, τ) can be very general. In particular the **fixed-point set** \mathbb{B}^{τ} could be empty (**free** action) or a sub-manifold of whatever co-dimension (and not necessary a discrete set of points).
- For instance there are family of involutive spheres $\mathbb{S}^{p,q} := (\mathbb{S}^{p+q-1}, \theta_{p,q})$ with $\theta_{p,q}$ defined by

 $(k_0, k_1, \ldots, k_{p-1}, k_p, \ldots, k_{p+q-1}) \xrightarrow{\theta_p, q} (k_0, k_1, \ldots, k_{p-1}, -k_p, \ldots, -k_{p+q-1})$ and of involutive tori

$$\mathbb{T}^{a,b,c} := \underbrace{\mathbb{S}^{2,0} \times \ldots \times \mathbb{S}^{2,0}}_{a-\text{times}} \times \underbrace{\mathbb{S}^{1,1} \times \ldots \times \mathbb{S}^{1,1}}_{b-\text{times}} \times \underbrace{\mathbb{S}^{0,2} \times \ldots \times \mathbb{S}^{0,2}}_{c-\text{times}}$$

Recently **Gat** and **Robbins (arXiv:1511.08994)** considered the cases $\mathbb{B} = \mathbb{S}^{0,3}$ (rigid rotor) and $\mathbb{B} = \mathbb{T}^{1,1,0}$ (phase space of slow dynamic of a 1D periodic particle). In the first case $\mathbb{B}^{\tau} = \emptyset$ and in the second $\mathbb{B}^{\tau} = \mathbb{S}^1 \sqcup \mathbb{S}^1$. Why more general involutive spaces?

 $! \, ! \,$ Many of the previous approaches just fail when \mathbb{B}^{τ} is not a finite set $! \, !$

 $\Downarrow \Downarrow \Downarrow \Downarrow$

Which object replaces the Fu-Kane-Mele index when \mathbb{B}^{τ} is not a finite set ?

 $\Downarrow \Downarrow \Downarrow \Downarrow$

A characteristic (cohomological) class called **FKMM-invariant**.

1. Time reversal symmetries and "Quaternionic" structures

2. The role of the (involutive) base space

3. In the search of a classifying object

4. FKMM vs. Fu-Kane-Mele

Relative equivariant cohomology

The Borel's construction

• (X, τ) any involutive space and $(\mathbb{S}^{\infty}, \theta)$ the **infinite** sphere (contractible space) with the **antipodal** (free) involution:

$$X_{\sim au} := rac{\mathbb{S}^{\infty} \times X}{ heta \times au}$$
 (homotopy quotient).

• \mathcal{Z} any abelian ring (module, system of coefficients, ...) $H^{j}_{\mathbb{Z}_{0}}(X, \mathcal{Z}) := H^{j}(X_{\sim \tau}, \mathcal{Z})$ (eq. cohomology groups).

• $\mathbb{Z}(m)$ the \mathbb{Z}_2 -local system on X based on the module \mathbb{Z} $\mathbb{Z}(m) \simeq X \times \mathbb{Z}$ endowed with $(x, \ell) \mapsto (\tau(x), (-1)^m \ell)$.

Relative equivariant cohomology

- $H^{\bullet}_{\mathbb{Z}_2}$ is a (generalized) **cohomology theory** which can be extended to pairs of spaces $Y \subseteq X$ in order to define **relative cohomology groups** $H^{\bullet}_{\mathbb{Z}_2}(X|Y,\mathcal{Z})$.
- In [D. Gomi, 2015] we showed that

 $\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{T}^{0,d,0})$ and $\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{1,d-1})$, $d \leq 4$ can be classified by a characteristic class with values in $H^{2}_{\mathbb{Z}_{2}}(\mathbb{B}|\mathbb{B}^{\tau},\mathbb{Z}(1))$: the FKMM-invariant.

$$\begin{aligned} & \mathcal{H}^{1}_{\mathbb{Z}_{2}}(\mathbb{B}^{\tau}_{\mathbb{Z}_{2}}(\mathbb{Z}(1)) \xrightarrow{\delta_{1}} \mathcal{H}^{2}_{\mathbb{Z}_{2}}(\mathbb{B}|\mathbb{B}^{\tau},\mathbb{Z}(1)) \xrightarrow{\delta_{2}} \mathcal{H}^{2}_{\mathbb{Z}_{2}}(\mathbb{B},\mathbb{Z}(1)) \xrightarrow{r} \mathcal{H}^{2}_{\mathbb{Z}_{2}}(\mathbb{B}^{\tau}_{$$

The results in [D. - Gomi, 2015] only apply to the case of a \mathbb{B}^{τ} finite. To consider more general involutive spaces we need more generality !

The (generalized) FKMM-invariant

THEOREM (D. - Gomi, 2016 | Part I)

Given (\mathbb{B}, τ) let

 $\operatorname{Pic}_{\mathcal{R}}(\mathbb{B}|\mathbb{B}^{\tau},\tau) := \left\{ [(\mathscr{L}, \boldsymbol{s})] \mid \mathscr{L} \in \operatorname{Pic}_{\mathcal{R}}(\mathbb{B}, \tau), \ \boldsymbol{s} : \mathscr{L}|_{\mathbb{B}^{\tau}} \to \mathbb{U}(1) \right\}$

with group structure given by the tensor product. Then

$$\operatorname{Pic}_{\mathcal{R}}(\mathbb{B}|\mathbb{B}^{\tau},\tau) \stackrel{\tilde{\kappa}}{\simeq} H^{2}_{\mathbb{Z}_{2}}(\mathbb{B}|\mathbb{B}^{\tau},\mathbb{Z}(1)).$$

This result extends the Kahn's isomorphism

$$\operatorname{Vec}_{\mathcal{R}}^{m}(\mathbb{B},\tau)\simeq H^{2}_{\mathbb{Z}_{2}}(\mathbb{B},\mathbb{Z}(1))$$

and indeed can be proved in a similar way.

The (generalized) FKMM-invariant

THEOREM (D. - Gomi, 2016 | Part II)

There is a group homomorphism

$$\kappa : \operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{B}, \tau) \longrightarrow H^{2}_{\mathbb{Z}_{2}}(\mathbb{B}|\mathbb{B}^{\tau}, \mathbb{Z}(1))$$

called the FKMM-invariant.

(1) Determinant functor: If $(\mathscr{E}, \Theta) \in \operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{B}, \tau)$ then $(\det \mathscr{E}, \det \Theta) \in \operatorname{Pic}_{\mathcal{R}}(\mathbb{B}, \tau)$;

(2) Canonical section:

It exists a **unique** (canonical) trivialization

 $\begin{aligned} h_{\operatorname{can}} &: \operatorname{det}\mathscr{E}|_{\mathbb{B}^{\tau}} \to \mathbb{B}^{\tau} \times \mathbb{C} \\ \text{which define } \mathbf{s}_{\operatorname{can}}(k) &:= h_{\operatorname{can}}^{-1}(k,1) \text{ for all } k \in \mathbb{B}^{\tau}. \end{aligned}$ $(3) \text{ The mapping } \mathscr{E} \mapsto (\operatorname{det}\mathscr{E}, \mathbf{s}_{\operatorname{can}}) \in \operatorname{Pic}_{\mathcal{R}}(\mathbb{B}|\mathbb{B}^{\tau}, \tau): \\ \kappa(\mathscr{E}, \Theta) &:= \tilde{\kappa}(\operatorname{det}\mathscr{E}, \mathbf{s}_{\mathscr{E}}). \end{aligned}$

ロット語 マイボット ゴー もくら

1. Time reversal symmetries and "Quaternionic" structures

2. The role of the (involutive) base space

3. In the search of a classifying object

4. FKMM vs. Fu-Kane-Mele

Properties of $\kappa : \operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{B}, \tau) \longrightarrow H^{2}_{\mathbb{Z}_{2}}(\mathbb{B}|\mathbb{B}^{\tau}, \mathbb{Z}(1))$

(i) **Isomorphic** \mathcal{Q} -bundles have the same FKMM-invariant: (ii) If (\mathscr{E}, Θ) is \mathcal{Q} -trivial then $\kappa(\mathscr{E}, \Theta) = 0$; (iii) κ is **natural** under the pullback induced by equivariant maps; (iv) $\kappa(\mathscr{E}_1 \oplus \mathscr{E}_2, \Theta_1 \oplus \Theta_2) = \kappa(\mathscr{E}_1, \Theta_1) + \kappa(\mathscr{E}_2, \Theta_2)$ (v) κ is the image of a **universal class** \mathfrak{h}_{univ} ; (vi) When $\mathbb{B}^{\tau} = \{$ finite collection of points $\}$ then $\kappa(\mathscr{E},\Theta) \simeq$ Fu-Kane-Mele invariants; (vii) When $\mathbb{B}^{\tau} = \emptyset$

 $\kappa(\mathscr{E},\Theta) \simeq c_1^{\mathcal{R}}(\det\mathscr{E},\det\Theta);$

(viii) When $\mathbb{B}^{\tau} = \emptyset$ and $\operatorname{Pic}_{\mathcal{Q}}(\mathbb{B}, \tau) \neq \emptyset$ then $\operatorname{Pic}_{\mathcal{Q}}(\mathbb{B}, \tau)$ is a **torsor** over $\operatorname{Pic}_{\mathcal{R}}(\mathbb{B}, \tau)$. Hence

 $\operatorname{Pic}_{\mathcal{Q}}(\mathbb{B},\tau) \simeq \operatorname{Pic}_{\mathcal{R}}(\mathbb{B},\tau) \simeq H^{2}_{\mathbb{Z}_{2}}(\mathbb{B},\mathbb{Z}(1)).$

Low dimension ($\dim(\mathbb{B}) \leqslant 3$)

(i) If dim(B) ≤ 2 and $\mathbb{B}^{\tau} \neq \emptyset$ then $\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{B}, \tau) \simeq H^{2}_{\mathbb{Z}_{2}}(\mathbb{B}|\mathbb{B}^{\tau}, \mathbb{Z}(1))$.

(ii) If dim(B) = 3 and $\mathbb{B}^{\tau} \neq \emptyset$ the map $\kappa : \operatorname{Vec}_{Q}^{2m}(\mathbb{B}, \tau) \hookrightarrow H^{2}_{\mathbb{Z}_{2}}(\mathbb{B}|\mathbb{B}^{\tau}, \mathbb{Z}(1))$ is only injective (even though in many situations like $\mathbb{S}^{p,q}$ and $\mathbb{T}^{a,b,c} \kappa$ turns out to be bijective).

(iii) If dim(\mathbb{B}) \leq 3 and $\mathbb{B}^{\tau} = \emptyset$ then

$$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{B},\tau) \simeq H^{2}_{\mathbb{Z}_{2}}(\mathbb{B},\mathbb{Z}(1))$$

and

$$\operatorname{Vec}_{\mathcal{Q}}^{2m+1}(\mathbb{B},\tau) \simeq \begin{cases} H_{\mathbb{Z}_{2}}^{2}(\mathbb{B},\mathbb{Z}(1)) & \text{if } \operatorname{Pic}_{\mathcal{Q}}(\mathbb{B},\tau) \neq \emptyset \\ \emptyset & \text{if } \operatorname{Pic}_{\mathcal{Q}}(\mathbb{B},\tau) = \emptyset. \end{cases}$$

- ロ ト < 昼 ト < 亘 ト < 巨 · つ Q C

Application to involutive spheres $\mathbb{S}^{p,q} := (\mathbb{S}^{p+q-1}, \theta_{p,q})$

$p+q\leqslant4$	<i>q</i> = 0	<i>q</i> = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4
$\operatorname{Vec}_{\mathcal{Q}}^{2m+1}(\mathbb{S}^{0,q})$	Ø	?	?	$2\mathbb{Z}+1$?
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{0,q})$	Ø	?	?	2 ℤ	?
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{1,q})$	0	0	\mathbb{Z}_2	\mathbb{Z}_2	
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{2,q})$	0	?	?		
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{3,q})$	0	?			
$\mathrm{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{4,q})$	0				

Application to involutive spheres $\mathbb{S}^{p,q} := (\mathbb{S}^{p+q-1}, \theta_{p,q})$

$p+q\leqslant4$	<i>q</i> = 0	<i>q</i> = 1	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4
$\operatorname{Vec}_{\mathcal{Q}}^{2m+1}(\mathbb{S}^{0,q})$	Ø	0	0	$2\mathbb{Z}+1$	Ø
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{0,q})$	Ø	0	0	2 ℤ	0
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{1,q})$	0	0	\mathbb{Z}_2	\mathbb{Z}_2	
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{2,q})$	0	2 ℤ	0		
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{3,q})$	0	0			
$\mathrm{Vec}_{\mathcal{Q}}^{2m}(\mathbb{S}^{4,q})$	0				

Application to involutive tori $\mathbb{T}^{a,b,c}$ (fixed points)

$$\mathbb{T}^{a,b,c} := \underbrace{\mathbb{S}^{2,0} \times \ldots \times \mathbb{S}^{2,0}}_{a-\text{times}} \times \underbrace{\mathbb{S}^{1,1} \times \ldots \times \mathbb{S}^{1,1}}_{b-\text{times}} \times \underbrace{\mathbb{S}^{0,2} \times \ldots \times \mathbb{S}^{0,2}}_{c-\text{times}}$$

$a+b\leqslant 3, c=0$	<i>a</i> = 0	<i>a</i> = 1	a = 2	<i>a</i> = 3
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{T}^{a,0,0})$	Ø	0	0	0
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{T}^{a,1,0})$	0	2ℤ	?	
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{T}^{a,2,0})$	\mathbb{Z}_2	?		
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{T}^{a,3,0})$	\mathbb{Z}_2^4			

Application to involutive tori $\mathbb{T}^{a,b,c}$ (fixed points)

$$\mathbb{T}^{a,b,c} := \underbrace{\mathbb{S}^{2,0} \times \ldots \times \mathbb{S}^{2,0}}_{a-\text{times}} \times \underbrace{\mathbb{S}^{1,1} \times \ldots \times \mathbb{S}^{1,1}}_{b-\text{times}} \times \underbrace{\mathbb{S}^{0,2} \times \ldots \times \mathbb{S}^{0,2}}_{c-\text{times}}$$

$a+b\leqslant 3, c=0$	<i>a</i> = 0	a = 1	a = 2	<i>a</i> = 3
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{T}^{a,0,0})$	Ø	0	0	0
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{T}^{a,1,0})$	0	2 ℤ	(2Z) ²	
$\operatorname{Vec}_{\mathcal{Q}}^{2m}(\mathbb{T}^{a,2,0})$	\mathbb{Z}_2	$\mathbb{Z}_2 \oplus (2\mathbb{Z})^2$		
$\mathrm{Vec}_{\mathcal{Q}}^{2m}(\mathbb{T}^{a,3,0})$	\mathbb{Z}_2^4			

・ロト・西ト・ヨト・ヨー うへの

Application to involutive tori $\mathbb{T}^{a,b,c}$ (free involution)

PROPOSITION (D. - Gomi, 2016)
$$\mathbb{T}^{a,b,c} \simeq \mathbb{T}^{a+c-1,b,1}$$
 $\forall \ c \geqslant 2$

$a+b\leqslant 2, c=1$	<i>a</i> = 0	<i>a</i> = 1	a = 2
$\operatorname{Vec}_{\mathcal{Q}}^{m}(\mathbb{T}^{a,0,1})$	0	?	?
$\operatorname{Vec}_{\mathcal{Q}}^{m}(\mathbb{T}^{a,1,1})$?	?	
$\operatorname{Vec}_{\mathcal{Q}}^{m}(\mathbb{T}^{a,2,1})$?		

For all $m \in \mathbb{N}$ odd or even.

Application to involutive tori $\mathbb{T}^{a,b,c}$ (free involution)

PROPOSITION (D. - Gomi, 2016)
$$\mathbb{T}^{a,b,c} \simeq \mathbb{T}^{a+c-1,b,1}$$
 $\forall \ c \geqslant 2$

$a+b\leqslant 2, c=1$	<i>a</i> = 0	<i>a</i> = 1	a = 2
$\operatorname{Vec}_{\mathcal{Q}}^{m}(\mathbb{T}^{a,0,1})$	0	\mathbb{Z}_2	\mathbb{Z}_2^2
$\operatorname{Vec}_{\mathcal{Q}}^{m}(\mathbb{T}^{a,1,1})$	2ℤ	$\mathbb{Z}_2\oplus (2\mathbb{Z})^2$	
$\operatorname{Vec}_{\mathcal{Q}}^{m}(\mathbb{T}^{a,2,1})$	(2Z) ²		

For all $m \in \mathbb{N}$ odd or even.

Thank you for your attention

《口》《聞》《臣》《臣》 臣 - 釣ぬ()