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Spectral flow for skew-adjoint Fredholm operators

Plan

e Review of classical spectral flow
e Laughlin arguments
e 7Zo-valued spectral flow

e Application to a topological insulator (Kitaev chain)
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Review of spectral flow

‘H separable Hilbert space and B(H) bounded operators
T € B(H) Fredolm <= Ker(T), Ker(T*) finite dimensional
T = T* Fredholm <= 0¢& 0..(T)
F..={T = T* Fredholm } has 3 components which contract to
Fo = AT eFalow(T) ={-1,1}}
F;, = {T € F.|ow(T) = {1}}
F. = AT €F.low(T) ={-1}}

Theorem (Atiyah-Singer 1969)

Homotopy groups of F*  are mon(F%) = 0 and mop+1(FE) =Z

Aim: spectral flow calculates 7 (F?))
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Intuitive notion of spectral flow

Given path t € [0,1] — T; = (T¢)* of self-adjoint Fredholms on

o(Ty)

—_—

to=0 t b ts th ts  tg ... ty=1

Counting of eigenvalues passing 0 works if path analytic (APS)
For continuous paths need to go to "generic position”, or:
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Phillips’ analytic approach (1996)

to=0 t b ts o ts tg ... ty =1
3 finite partition 0 =tp < t; < ... < ty_1 < ty = 1 of [0,1] and
an <0< b, with t € [ty,—1, tn] — Xx(Tt € [an, bp]) continuous. Set:

N
SF(t€[0,1] = Tt) = > Tra (X(Tey € [n,0]) = X(Te, € [an, 0]))

n=1
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Theorem (Phillips 1996)

SE(t € [0,1] — T;) independent of partition and a, < 0 < bp,.
It is a homotopy invariant when end points are kept fixed.

It satisfies concatenation and normalization:
SF(t € [0,1] — T + (1 —2t)P) = —dim(P) for TP=P

Theorem (Lesch 2004)

Homotopy invariance, concatenation, normalization characterize SF

Theorem (Perera 1993, Phillips 1996)

SF on loops establishes isomorphism 1 (F*) = Z

Theorem (Phillips 1996, based on Avron-Seiler-Simon 1994)

Let Ty = U*ToU invertible with U unitary and [U, Ty| compact

SF(t € [0,1] = (1—t) To+tT1) = —Ind(PUP|p3), P = x(To > 0)
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Example: Laughlin argument 1981
Theorem (Macris 2002, De Nittis, S-B 2014)

H disordered Harper-like operator on (?(Z?) ® Ct with u € gap
He, Hamiltonian with extra flux o € [0, 1] through 1 cell of Z?

Then To = Ho — p € F2, and with P = x(Ha < 1), U = 355

SF(ae [0,1] — H, through u) = —Ind(PUP) = —Ch(P)

U(H,‘)
N

7
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Z, invariant for QSH by spectral flow

TRS implemented by a real unitary S, with S2 = —1
Sttﬁastr = H,a = U* Hlfa U
Both for & = 0 (no flux) and a = % (half flux) one has TRS

Theorem (De Nittis, S-B AHP 2006)

Indy(PUP) = dim(ker(PUP)) mod 2 = 1, namely non-trivial QSH
= Hi has Kramers pair bound state in gap
2

o (H)]

y22
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Laughlin arguments in other dimensions
(in preparation with Carey)

d = 1: chiral spectral flow in SSH leads to bound state of H%

+
oL

o

-2 -1 0 1 2 3

On (?(Z9) ® Ct with d > 3: insert non-abelian Wu-Yang monopol

i [D,] °
a=300 b=y
j=1
into non-abilian translations (say without magnetic field):
Sp = Vi = U(X)Sk  , V¢ = idk+ oAk

Then study (chiral) spectral flow for H, = P(Sf,...,S55)
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Basics on skew-adjoint Fredholm operators

Hr real Hilbert space with complexification He = Hr @ iHRr

T € B(HR) extends to complex linear operator (e.g. for spectrum)
T* = —T skew-adjoint = o(T)=0(T)CIiR

T* = —T Fredholm <= 0¢ 0..(T)

Theorem (Atiyah Singer 1969)

Fo ={T = —T* Fredholm } has two connected components
distinguished by: Ind(T) = dim(Ker(T)) mod 2

Homotopy groups satisfy w,(Fy) = mni8(Fe) and are given by

n 0123 [al5]6]7
) || Zo | Zo |0 2Z|0]0]|0]|2Z

Aim: define Zy-valued spectral flow calculating 71 (F*))
Note: SF(te€[0,1]— T;€F,) =0
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Start with example in Hp = R?

0 -1 - 0 —1
T, = (2t —1 , T, = [2t—1
e = )<1 o) e = | ‘(1 0)

Spectra identical o(T:) = o(T¢) = {(1 — 2t)i, (2t — 1)}, but

~ 0 -1
T:(s) = [2ts—1 e F,
=20 7).

homotopy of paths with T¢(1) = T; and T:(0) constant
No such homotopy for T; !
Obstruction is change of orientation of eigenfunctions:

01
T = A" ToA A=
L= AT, 3 o)

Then sgn(det(A)) <0
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Definition

dim(HRr) < oo and Ty, T1 € Fy, with nullity dim(Hg) mod 2
If T = A*ToA for some invertible A, then
SFQ(To, Tl) = sgn(det(A)) € Zo

Now similar as Phillips: path t — T; € F,, with Indy(7T¢) =0

i

-1
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Definition of Z,-valued spectral flow

For a > 0 set Qi(t) = x(T: € (—ia,ia))

3 finite partition 0 =tp < t1 < ... < ty_1 <ty=1land a, >0
ot € [th—1,tn] — Qa,(t) continuous and constant finite rank
 [|Q.,(t) = Qa, ()| < € V t,1" € [tn1,tn]

o [7(Te) =m(Te)lle < € V t,t' € [tn1, tn]

for some € < %

V,, : Ran(Q,,(tn—1)) — Ran(Qa,,(t,)) orthogonal projection,
namely Vv = Q,,(t,)v. Check: V, is a bijection.

Define 7% = Q.(t) T Qs(t) + R: with Ry lifting kernel

Definition

N
SFa(t € [0,1] = Te) = > SFo(TE), VT V,) mod 2

th—1°
n=1




Spectral flow for skew-adjoint Fredholm operators

Basic properties

SFy(t € [0,1] — T; € Fy,.) independent of partition and a, > 0.
It is a homotopy invariant when end points are kept fixed.
It satisfies concatenation.

It satisfies a normalization (later).

SF» has characterizing properties of SF, but no "spectral flowing”

SF2 on loops establishes isomorphism 71 (Fy.) = Z»
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Reformulation

J € B(Hg) complex structure <= J* = —Jand J2= -1

Jo, J1 complex structures with ||m(Jo) — w(J1)|lg < 1. Then

SFa(t € [0,1] = tho+(1—t)J1 € Fu) = & dim(Ker(Jp+J1)) mod 2

Proof: Both sides are homotopy invariants... O

For above partition of path t € [0,1] + Ty, set J, = Ty, | Tt,|~*
Then

N
SFy(t € [0,1] — T;) = (Z; dim(Ker(Jp_1 + Jn))> mod 2

n=1

For classical spectral flow similar with index of pairs of projections
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An index formula and canonical example

J complex structure, O = (O*)~! orthogonal with [O, J] compact
SFy(t € [0,1] — (1 —t)J + tO*JO) = dim Ker(POP|py) mod 2

where P = x(iJ > 0) Hardy

Example:

Hp = [3(S!) ® R? and Hc = [2(S!) ® C2

Fourier F : H¢ — (2(Z) ® C2

J = F*JF where J = isgn(X) ® 15 + [0)(0| ® ic»

O = (O(k))kest fibered with 2 x 2 rotation matrix O(k) by k
SFo(t € [0,1] — (1 — t)J 4+ tO*JO) = 1 = dim Ker(POP|py.)
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Skew-adjoint Fredholm = gapped BdG

Fermionic quadratic Hamiltonian H = (a a*)H(.) on F_(H)
BdG Hamiltonian H € B(H & H) satisfies even PHS

_ 01
oiHoy = —H o1 = <1 0)

Then Majorana representation:
. - ) 1 /1 -
HMaj - C HC = — Hl\laj - IT, C == \/§< ,>

Then: T=Tand T* = —T and
TelF, <= 0Oingapof H
Thus: paths of BdG's have a Zj-valued spectral flow
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Kitaev chain with flux (disorder suppressed)

Here H = (?(Z) ® C? and with shift S and p € R:

gy L (S+S+om i(S-5)
2\ i(S-5) —(S+S5 +2u)

1/1 ]
= S+ S tpul®os, 50:5®2<_ ’1>
I _—

Insert flux: Hy = S0+ Sk + 11 ® 03

1[e™—1 i(e™ 1)
Sa = S + )0 ® = , .
0 ‘ >< | 2 <i(el7roz _ 1) _(elﬂ'a _ 1))

+
o

o
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Spectral flow and bound states at defect

Proposition

For |u| <1,
SFa(a € [0,1] = H,) = 1

Time-reversal symmetry 03Hos = H, hence in CAZ Class BDI

Also holds for half flux: 03H7%03 = H%

Proposition

For || < 1, Hi has odd number of evenly degenerate zero modes:
2

%dimC(Kerc(H%)) mod2 = 1

Proof: Symmetry o(H,) = 0(H1—.) and above Proposition



