Spectral flow for skew-adjoint Fredholm operators

Hermann Schulz-Baldes, Erlangen collaborators:

Alan Carey, John Phillips for arXiv:1604.06994

Giuseppe De Nittis for Spectral flows for flux tubes, AHP 2016

Adelaide, September 2016

Plan

- Review of classical spectral flow
- Laughlin arguments
- \mathbb{Z}_2 -valued spectral flow
- Application to a topological insulator (Kitaev chain)

Review of spectral flow

 ${\mathcal H}$ separable Hilbert space and ${\mathbb B}({\mathcal H})$ bounded operators

$$T \in \mathbb{B}(\mathcal{H})$$
 Fredolm \iff $\operatorname{Ker}(T)$, $\operatorname{Ker}(T^*)$ finite dimensional

$$T = T^*$$
 Fredholm \iff $0 \notin \sigma_{ess}(T)$

 $\mathbb{F}_{\mbox{\tiny sa}} = \{ \textit{T} = \textit{T}^* \mbox{ Fredholm } \}$ has 3 components which contract to

$$\begin{split} \mathbb{F}_{\mathrm{sa}}^* &= \left. \left\{ T \in \mathbb{F}_{\mathrm{sa}} \, \middle| \, \sigma_{\mathrm{ess}}(T) = \left\{ -1, 1 \right\} \right\} \\ \mathbb{F}_{\mathrm{sa}}^+ &= \left. \left\{ T \in \mathbb{F}_{\mathrm{sa}} \, \middle| \, \sigma_{\mathrm{ess}}(T) = \left\{ 1 \right\} \right\} \\ \mathbb{F}_{\mathrm{cs}}^- &= \left. \left\{ T \in \mathbb{F}_{\mathrm{sa}} \, \middle| \, \sigma_{\mathrm{ess}}(T) = \left\{ -1 \right\} \right\} \end{split}$$

Theorem (Atiyah-Singer 1969)

Homotopy groups of \mathbb{F}_{sa}^* are $\pi_{2n}(\mathbb{F}_{sa}^*)=0$ and $\pi_{2n+1}(\mathbb{F}_{sa}^*)=\mathbb{Z}$

Aim: spectral flow calculates $\pi_1(\mathbb{F}_{sa}^*)$

Intuitive notion of spectral flow

Given path $t \in [0,1] \mapsto \mathcal{T}_t = (\mathcal{T}_t)^*$ of self-adjoint Fredholms on \mathcal{H}

Counting of eigenvalues passing 0 works if path analytic (APS) For continuous paths need to go to "generic position", or:

Phillips' analytic approach (1996)

 \exists finite partition $0 = t_0 < t_1 < \ldots < t_{N-1} < t_N = 1$ of [0,1] and $a_n < 0 < b_n$ with $t \in [t_{n-1}, t_n] \mapsto \chi(T_t \in [a_n, b_n])$ continuous. Set:

$$\mathrm{SF}(t \in [0,1] \mapsto T_t) = \sum_{n=1}^{N} \mathrm{Tr}_{\mathcal{H}} \left(\chi(T_{t_{n-1}} \in [a_n,0]) - \chi(T_{t_n} \in [a_n,0]) \right)$$

Theorem (Phillips 1996)

 $\mathrm{SF}(t \in [0,1] \mapsto T_t)$ independent of partition and $a_n < 0 < b_n$. It is a homotopy invariant when end points are kept fixed. It satisfies concatenation and normalization:

$$SF(t \in [0,1] \mapsto T + (1-2t)P) = -\dim(P)$$
 for $TP = P$

Theorem (Lesch 2004)

Homotopy invariance, concatenation, normalization characterize SF

Theorem (Perera 1993, Phillips 1996)

SF on loops establishes isomorphism $\pi_1(\mathbb{F}^*_{sa}) = \mathbb{Z}$

Theorem (Phillips 1996, based on Avron-Seiler-Simon 1994)

Let $T_1 = U^*T_0U$ invertible with U unitary and $[U, T_0]$ compact

$$SF(t \in [0,1] \mapsto (1-t)T_0 + tT_1) = -Ind(PUP|_{PH}), \ P = \chi(T_0 > 0)$$

Example: Laughlin argument 1981

Theorem (Macris 2002, De Nittis, S-B 2014)

H disordered Harper-like operator on $\ell^2(\mathbb{Z}^2) \otimes \mathbb{C}^L$ with $\mu \in \operatorname{gap}$ H_{α} Hamiltonian with extra flux $\alpha \in [0,1]$ through 1 cell of \mathbb{Z}^2 Then $T_{\alpha} = H_{\alpha} - \mu \in \mathbb{F}^*_{\operatorname{sa}}$ and with $P = \chi(H_{\alpha} \leq \mu)$, $U = \frac{X_1 + iX_2}{|X_1 + iX_2|}$ $\operatorname{SF}\left(\alpha \in [0,1] \mapsto H_{\alpha} \text{ through } \mu\right) = -\operatorname{Ind}(PUP) = -\operatorname{Ch}(P)$

\mathbb{Z}_2 invariant for QSH by spectral flow

TRS implemented by a real unitary $S_{
m tr}$ with $S_{
m tr}^2 = -1$

$$S_{\mathrm{tr}}^* \overline{H_{\alpha}} S_{\mathrm{tr}} = H_{-\alpha} = U^* H_{1-\alpha} U$$

Both for $\alpha = 0$ (no flux) and $\alpha = \frac{1}{2}$ (half flux) one has TRS

Theorem (De Nittis, S-B AHP 2006)

 $\operatorname{Ind}_2(PUP) = \operatorname{dim}(\ker(PUP)) \bmod 2 = 1$, namely non-trivial QSH $\Longrightarrow H_{\frac{1}{2}}$ has Kramers pair bound state in gap

Laughlin arguments in other dimensions (in preparation with Carey)

d=1: chiral spectral flow in SSH leads to bound state of $H_{\frac{1}{2}}$

$$+\frac{1}{1}$$
 $\pi\alpha$
 $\pi\alpha$
 -2
 -1
 0
 1
 2
 3

On $\ell^2(\mathbb{Z}^d) \otimes \mathbb{C}^L$ with $d \geq 3$: insert non-abelian Wu-Yang monopol

$$A = \frac{i}{2} \frac{[D, \gamma]}{D^2} , \qquad D = \sum_{i=1}^d \gamma_i X_i$$

into non-abilian translations (say without magnetic field):

$$S_k^{\alpha} = e^{i\nabla_k^{\alpha}} = U^{\alpha}(X)S_k$$
, $\nabla_k^{\alpha} = i\partial_k + \alpha A_k$

Then study (chiral) spectral flow for $H_{\alpha} = P(S_1^{\alpha}, \dots, S_d^{\alpha})$

Basics on skew-adjoint Fredholm operators

 $\mathcal{H}_{\mathbb{R}}$ real Hilbert space with complexification $\mathcal{H}_{\mathbb{C}} = \mathcal{H}_{\mathbb{R}} \oplus i\mathcal{H}_{\mathbb{R}}$ $T \in \mathbb{B}(\mathcal{H}_{\mathbb{R}})$ extends to complex linear operator (e.g. for spectrum) $T^* = -T$ skew-adjoint $\implies \sigma(T) = \overline{\sigma(T)} \subset i\mathbb{R}$ $T^* = -T$ Fredholm $\iff 0 \notin \sigma_{\mathrm{ess}}(T)$

Theorem (Atiyah Singer 1969)

n	0	1	2	3	4	5	6	7
$\pi_n(\mathbb{F}_{ ext{sk}})$	\mathbb{Z}_2	\mathbb{Z}_2	0	$2\mathbb{Z}$	0	0	0	\mathbb{Z}

Aim: define \mathbb{Z}_2 -valued spectral flow calculating $\pi_1(\mathbb{F}_{\mathfrak{s}_a}^*)$

Note: SF($t \in [0,1] \mapsto T_t \in \mathbb{F}_{sk}$) = 0

Start with example in $\mathcal{H}_{\mathbb{R}} = \mathbb{R}^2$

$$T_t = (2t-1) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $\widetilde{T}_t = |2t-1| \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Spectra identical $\sigma(T_t) = \sigma(\widetilde{T}_t) = \{(1-2t)i, (2t-1)i\}$, but

$$\widetilde{T}_t(s) \ = \ |2ts-1| egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} \ \in \ \mathbb{F}_{ ext{sk}}$$

homotopy of paths with $\widetilde{T}_t(1) = \widetilde{T}_t$ and $\widetilde{T}_t(0)$ constant No such homotopy for T_t !

Obstruction is change of orientation of eigenfunctions:

$$T_1 = A^* T_0 A$$
 $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Then sgn(det(A)) < 0

Definition

 $\dim(\mathcal{H}_{\mathbb{R}}) < \infty$ and $T_0, T_1 \in \mathbb{F}_{\mathrm{sk}}$ with nullity $\dim(\mathcal{H}_{\mathbb{R}}) \mod 2$ If $T_1 = A^* T_0 A$ for some invertible A, then $\mathrm{SF}_2(T_0, T_1) = \mathrm{sgn}(\det(A)) \in \mathbb{Z}_2$

Now similar as Phillips: path $t\mapsto \mathcal{T}_t\in\mathbb{F}_{\mathrm{sk}}$ with $\mathrm{Ind}_2(\mathcal{T}_t)=0$

Definition of \mathbb{Z}_2 -valued spectral flow

For
$$a > 0$$
 set $Q_a(t) = \chi(T_t \in (-ia, ia))$

 \exists finite partition $0 = t_0 < t_1 < \ldots < t_{N-1} < t_N = 1$ and $a_n > 0$

- $t \in [t_{n-1}, t_n] \mapsto Q_{a_n}(t)$ continuous and constant finite rank
- $\bullet \|Q_{a_n}(t) Q_{a_n}(t')\| < \epsilon \quad \forall \quad t, t' \in [t_{n-1}, t_n]$
- $\bullet \ \|\pi(T_t) \pi(T_{t'})\|_{\mathcal{Q}} < \epsilon \quad \forall \ t, t' \in [t_{n-1}, t_n]$

for some $\epsilon \leq \frac{1}{5}$

 $V_n: \operatorname{Ran}(Q_{a_n}(t_{n-1})) \to \operatorname{Ran}(Q_{a_n}(t_n))$ orthogonal projection, namely $V_n v = Q_{a_n}(t_n)v$. Check: V_n is a bijection.

Define $T_t^{(a)} = Q_a(t) T_t Q_a(t) + R_t$ with R_t lifting kernel

Definition

$$\mathrm{SF}_2(t \in [0,1] \mapsto T_t) = \sum_{n=1}^{N} \mathrm{SF}_2(T_{t_{n-1}}^{(a_n)}, V_n^* T_{t_n}^{(a_n)} V_n) \bmod 2$$

Basic properties

Theorem

 ${
m SF}_2(t\in[0,1]\mapsto T_t\in\mathbb{F}_{
m sk})$ independent of partition and $a_n>0$. It is a homotopy invariant when end points are kept fixed. It satisfies concatenation. It satisfies a normalization (later).

SF₂ has characterizing properties of SF, but no "spectral flowing"

Theorem

 ${
m SF}_2$ on loops establishes isomorphism $\pi_1(\mathbb{F}_{
m sk})=\mathbb{Z}_2$

Reformulation

$$J \in \mathbb{B}(\mathcal{H}_{\mathbb{R}})$$
 complex structure $\iff J^* = -J$ and $J^2 = -1$

Theorem

 J_0 , J_1 complex structures with $\|\pi(J_0) - \pi(J_1)\|_{\mathcal{Q}} < 1$. Then

$$\mathrm{SF}_2(t \in [0,1] \mapsto tJ_0 + (1-t)J_1 \in \mathbb{F}_{\mathrm{sk}}) = \frac{1}{2} \, \dim(\mathrm{Ker}(J_0 + J_1)) \, \mathrm{mod} \, 2$$

Proof: Both sides are homotopy invariants...

Theorem

For above partition of path $t \in [0,1] \mapsto T_t$, set $J_n = T_{t_n} |T_{t_n}|^{-1}$ Then

$$\operatorname{SF}_2(t \in [0,1] \mapsto T_t) = \left(\sum_{n=1}^N \frac{1}{2} \operatorname{dim}(\operatorname{Ker}(J_{n-1} + J_n))\right) \operatorname{mod} 2$$

For classical spectral flow similar with index of pairs of projections

An index formula and canonical example

Theorem

J complex structure, $O = (O^*)^{-1}$ orthogonal with [O, J] compact

$$\operatorname{SF}_2(t \in [0,1] \mapsto (1-t)J + tO^*JO) = \dim \operatorname{Ker}(POP|_{P\mathcal{H}}) \operatorname{mod} 2$$

where
$$P = \chi(iJ > 0)$$
 Hardy

Example:

$$\mathcal{H}_{\mathbb{R}}=L^2_{\mathbb{R}}(\mathbb{S}^1)\otimes\mathbb{R}^2$$
 and $\mathcal{H}_{\mathbb{C}}=L^2_{\mathbb{C}}(\mathbb{S}^1)\otimes\mathbb{C}^2$

Fourier
$$\mathcal{F}:\mathcal{H}_{\mathbb{C}}\to\ell^2_{\mathbb{C}}(\mathbb{Z})\otimes\mathbb{C}^2$$

$$J = \mathcal{F}^* \widehat{J} \mathcal{F}$$
 where $\widehat{J} = i \operatorname{sgn}(X) \otimes \mathbf{1}_2 + |0\rangle\langle 0| \otimes i\sigma_2$

$$O = (O(k))_{k \in \mathbb{S}^1}$$
 fibered with 2×2 rotation matrix $O(k)$ by k

$$\mathrm{SF}_2(t \in [0,1] \mapsto (1-t)J + tO^*JO) = 1 = \dim \mathrm{Ker}(POP|_{P\mathcal{H}_\mathbb{C}})$$

Skew-adjoint Fredholm = gapped BdG

Fermionic quadratic Hamiltonian $\mathbf{H}=(a\ a^*)H({a\atop a^*})$ on $\mathcal{F}_-(\mathcal{H})$ BdG Hamiltonian $H\in\mathbb{B}(\mathcal{H}\oplus\mathcal{H})$ satisfies even PHS

$$\sigma_1^* \overline{H} \sigma_1 = -H$$
 $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Then Majorana representation:

$$H_{\mathrm{Maj}} = C^*HC = -\overline{H_{\mathrm{Maj}}} = iT, \qquad C = \frac{1}{\sqrt{2}} \begin{pmatrix} 1-i\\1&i \end{pmatrix}$$

Then: $\overline{T} = T$ and $T^* = -T$ and

 $T \in \mathbb{F}_{
m sk} \iff \mathsf{0} \; \mathsf{in} \; \mathsf{gap} \; \mathsf{of} \; H$

Thus: paths of BdG's have a \mathbb{Z}_2 -valued spectral flow

Kitaev chain with flux (disorder suppressed)

Here $\mathcal{H} = \ell^2(\mathbb{Z}) \otimes \mathbb{C}^2$ and with shift S and $\mu \in \mathbb{R}$:

$$H = \frac{1}{2} \begin{pmatrix} S + S^* + 2\mu & i(S - S^*) \\ i(S - S^*) & -(S + S^* + 2\mu) \end{pmatrix}$$
$$= S_0 + S_0^* + \mu \mathbf{1} \otimes \sigma_3 , \qquad S_0 = S \otimes \frac{1}{2} \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$$

Insert flux: $H_{\alpha} = S_{\alpha} + S_{\alpha}^* + \mu \mathbf{1} \otimes \sigma_3$

Spectral flow and bound states at defect

Proposition

For $|\mu| < 1$,

$$SF_2(\alpha \in [0,1] \mapsto H_\alpha) = 1$$

Time-reversal symmetry $\sigma_3 \overline{H} \sigma_3 = H$, hence in CAZ Class BDI

Also holds for half flux: $\sigma_3\overline{H_{\frac{1}{2}}}\sigma_3=H_{\frac{1}{2}}$

Proposition

For $|\mu| < 1$, $H_{\frac{1}{2}}$ has odd number of evenly degenerate zero modes:

$$\frac{1}{2} \dim_{\mathbb{C}}(\operatorname{Ker}_{\mathbb{C}}(H_{\frac{1}{2}})) \mod 2 = 1$$

Proof: Symmetry $\sigma(H_{\alpha}) = \sigma(H_{1-\alpha})$ and above Proposition