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MN .= {f: N — M| f is continous}.

Theorem (Chas & Sullivan '99)

For M a compact, oriented d-manifold, letting
H. (=) := Hsta(—) denote the d-shifted homology,

H, (MS‘)

carries the structure of a (2)-Batalin-Vilkovisky algebra.
In particular, we have a multiplication

H, (M) @ H,(MS') — H, (MS')
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Coloured Operads

A coloured topological operad O consist of

» Spaces O(—; k) of k-ary morphisms for all k € N.

» A Space Ob(O) of colours.

» Fork,me N and i€ {1,...,k}, commutative diagrams

O(—ik+m—1) <t O(=; k) Xop(0) O(—=m) = O(—;m)

\L e\‘/in
ev; ¢
O(—; k) Ob(O)
along with certain coherence laws.

Letting k = m = 1 gives categories internal to topological
spaces. Taking Ob(O) = = yields classical operads
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Cleaving Data:

Consider (T, P) where T is a binary, rooted planar tree, and P
a decoration at each internal vertex of T with an affine, oriented
hyperplane of R™'.

The data (T, P) cleave N = R"*' a submanifold if the positive
and negative part from all hyperplanes intersect the subspace of
N they cleave non-trivially, and the hyperplanes are transverse
to N



Cleaving Data:

Consider (T, P) where T is a binary, rooted planar tree, and P
a decoration at each internal vertex of T with an affine, oriented
hyperplane of R™'.

If (T, P) cleave N, we assign the subsets of N that is the
result of the cleaving procedure as timber to N. These are
labelled according to the leafs of T
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The Cleavage Operad

Any N < R"*', defines a cleavage operad Cleavy:

» Ob((leavy) is given by timber associated to any cleaving
data (T,P) of N

» Cleavn(U; k) will be a subquotient of the set

{(T.P)| Tis k-ary and (T, P) cleaves U e Ob(Cleav)

We take the subset where each timber N; of (T, P) has
CNi = | Tginie *- Let (T, P) ~ (T', P’} if all their timber
Ni,...,Ngand Nj,..., N, satisfiy N; = N/ for all
ief{l,... k}
The above are given topology by seeing that S” x R
parametrize affine, oriented hyperplanes.
oj-composition is induced by grafting indexing trees.
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Action in Symbols
Taking the functor M~ dualizes to the pullback-diagram
MN

[7.7] (mM)*

| t

MnO(B[T‘E]) i> Hf,(:1 M(CNI)

We see Mfy 5 = {f e M" | f is constant along B(r p)}.
So Cleavy acts on MN through the correspondences

MM ——Mfr g — (M)

Working homotopically leads us to an actual stable map

n\ K n ,
C[Ed’vsn(—;k) X (MS ) S M A S—dlm(M)x(k—1)
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Cleavage Homotopy Type

@i&&n represents the homotopy class of E,-operads.

Definition

A coloured operad O is called E, if it is weakly equivalent to
the trivial extension

Disk , x Ob(O)

Theorem (B.)

The coloured operad Cleavsn is Epy1

Cleav sn can be twisted by SO(n+ 1), this leads to
Corollary

H, (MS") is a (n+ 1)-Batalin-Vilkovisky-algebra
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Group Actions

For a group G acting freely on S” < R™ ', The group action
leads to an algebra structure on HG(MS").
The inclusions of unit spheres

S 82 s ...

gives an inclusion of operads

Cleavg — Cleavg — ---

and the limiting action gives a E-structure on
MS” A §—dmM) « pp A g—dim(M)_

This is a spectrum-level definition of the intersection product
of manifolds, and gives similar statements for H (M) where G
acts freely on S < R™.
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Y

N,

However, the action on MS' differs from that of Cleav s
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Khovanov Homology and TQFTs

Theorem (Tamanoi '08)

In String Topology, a product followed by a (graded) coproduct
is trivial

In particular, a TQFT-construction of Cohen-Godin has most
associated operations trivial.

For Cleavy this means that no new operations arise in
]I-]I*(M31) from isotoping K (S') = R? away from the unit circle.

Foraknot K: S' — RR? the gordian knot operad Gord . is
constructed with only slight modifications from Cleavy

Theorem (b. (in progress))
H.(Gord ) acts on H., (MUx S to produce a knot invariant

This is a Khovanov homology construction, and a different
flavour of TQFT than Cohen-Godin.
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The knot invariant action comes from a 2-categorical

correspondence structure combining string topology with
cobordisms O(v)—— Cy,w <——0(w)

o(v) K
MO(Y) «—— M[T.Vﬂv . (Mo(v))
Com K
Mr W7y —— (u%)
O(w) K
MOW) ~——— M[TE]W J— (Mo(w))
O) c S8

O(w) c S! ’



