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Twisted K -theory and T-duality Defining twisted K -theory

Twisted K -theory

Twisted K -theory is an invariant associated to a topological space X
and a class H ∈ H3(X ) = [X ,K (Z,3)].

Definition
For a Hilbert space H, PU(H) is the projective unitary group of H and
Fred(H) is the space of Fredholm operators on H.

Kuiper’s theorem implies that PU(H) = K (Z,2), and thus the
classifying space B PU(H) = K (Z,3).

Recall that Fred(H) ' BU × Z is a representing space for K -theory:

K 0(X ) = [X ,Fred(H)].

Note further that PU(H) acts naturally on Fred(H).
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Twisted K -theory and T-duality Defining twisted K -theory

Construction

Define ΦH – a principal PU(H)-bundle over X – via pullback over H of
the tautological bundle E PU(H)→ B PU(H):

ΦH //

��

E PU(H)

��
X H //B PU(H) = K (Z,3)

There is an associated bundle ΦH ×PU(H) Fred(H) over X with fibre
Fred(H).

Definition
The twisted K -theory of X

K 0
H(X ) := Γ[X ; ΦH ×PU(H) Fred(H)]

is the group of homotopy classes of sections of this bundle.
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Twisted K -theory and T-duality Spectra

Twisted K -theory spectra

Recall that spectra are objects in the stable homotopy category. This
enlarges the category of spaces by allowing desuspension of spaces.

Objects in this category define cohomology theories as representable
functors (e.g., K ∗(X ) = [X+,K] where K is the spectrum representing
K -theory).

For a space X and H ∈ H3(X ), define spectra KH(X ) and KH(X ) so

π−∗KH(X ) = K ∗H(X ) and π∗KH(X ) = K H
∗ (X ).

If H = 0, then KH(X ) = F (X+,K) and KH(X ) = X+ ∧ K. The
description above makes K into a PU(H)-equivariant spectrum.

The homomorphism ΩH : ΩX → K (Z,2) = PU(H), gives ΩX an action
on K. The homotopy fixed point and orbit spectra are twisted K -theory:

Proposition

KH(X ) ' KhΩX = F ΩX (EΩX+,K) and KH(X ) ' KhΩX = K ∧ΩX EΩX+.
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Twisted K -theory and T-duality T-duality and a theorem of Bouwkengt-Evslin-Mathai

T-dual circle bundles

Let π : E → M and π̂ : Ê → M be principal circle bundles over a
manifold M. Form the correspondence space:

E ×M Ê
p

||yyyyyyyyy bp
""EEEEEEEEE

E

π
##FFFFFFFFFF Ê

bπ
||xxxxxxxxxx

M

Definition

For H ∈ H3(E) and Ĥ ∈ H3(Ê), the pairs (E ,H) and (Ê , Ĥ) are T-dual
if

π!(H) = c1(Ê), π̂!(Ĥ) = c1(E), and p∗(H) = p̂∗(Ĥ).
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Twisted K -theory and T-duality T-duality and a theorem of Bouwkengt-Evslin-Mathai

The T-duality isomorphism

Bouwknegt-Evslin-Mathai show:

Theorem (BEM ’04)

If (E ,H) and (Ê , Ĥ) are T-dual, there is a map

λ∗ : K ∗p∗(H)(E ×M Ê)→ K ∗bp∗(bH)
(E ×M Ê)

with the property that the composite

p̂! ◦ λ∗ ◦ p∗ : K ∗H(E)→ K ∗+1bH (Ê)

is an isomorphism.

Goal: Understand and explain this result using stable homotopy
theory.
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Twisted K -theory and T-duality A simple example

Circle bundles over S2

Let M = S2, and consider the Hopf fibration η : S3 → S2 and its
reduction η : RP3 → S2. These bundles are classified by the Chern
classes 1,2 ∈ Z = H2(S2).

Note that H3(S3) = Z = H3(RP3), so

(S3,H = 2) and (RP3, Ĥ = 1) are T-dual.

We verify [BEM] by computing:

K 0
H(S3) = 0, K 1

H(S3) = Z/2,
while

K 0bH(RP3) = Z/2, K 1bH(RP3) = 0

using the Atiyah-Hirzebruch spectral sequence for twisted K -theory.
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A new proof using equivariant homotopy theory Plan of the proof

A warm-up

Let M be a point; the correspondence diagram becomes

S1 S1 × Ŝ1
poo

bp //Ŝ1

We compute:

K ∗(S1) = Λ[x ], K ∗(Ŝ1) = Λ[x̂ ], and K ∗(S1 × Ŝ1) = Λ[x , x̂ ].

Further, λ∗(z) = z ⊗ P, where P → S1 × Ŝ1 is the Poincaré line
bundle. P is isomorphic to the pullback of the tautological bundle over
S2 = CP1 via the map that collapses the 1-skeleton.

In K ∗(S1 × Ŝ1), P = 1 + xx̂ . We verify that p̂! ◦ λ∗ ◦ p∗ is an
isomorphism:

Λ[x ]
p∗ //Λ[x , x̂ ]

λ∗ //Λ[x , x̂ ]
bp! //Λ[x̂ ].

1 //1 //1 + xx̂ // x̂

x //x //x(1 + xx̂) = x //1
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A new proof using equivariant homotopy theory Plan of the proof

The idea

For the bundle π : E → M, we have a fibre sequence:

· · · //ΩE Ωπ //ΩM //S1 //E π //M

which makes S1 a space with an ΩM action. Further, the homotopy
quotient

S1
hΩM = [S1/ΩM] = E

There are similar descriptions of Ê and E ×M Ê as homotopy quotients
of Ŝ1 and S1 × Ŝ1 by ΩM.

Plan: We will reprove the T-duality isomorphism by extending the
previous isomorphism ΩM-equivariantly. The subtlety is incorporating
the twisting.
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A new proof using equivariant homotopy theory A classifying space for pairs

The space R

Definition
Define R to be the homotopy fibre of the map

c ∪ ĉ : K (Z,2)× K (Z,2)→ K (Z,4)

defining the product c ∪ ĉ ∈ H4(K (Z,2)× K (Z,2)) of first Chern
classes in H2(K (Z,2)).

Theorem (Bunke-Schick, ’05)

R is a classifying space for pairs (E ,H):

[M,R] = {(E ,H) | π : E → M an S1-bundle, H ∈ H3(E)}/ ∼=

Why: The Gysin sequence implies that c1(E) ∪ π!(H) = 0.
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A new proof using equivariant homotopy theory A classifying space for pairs

Universal bundles

Extend the defining fibre sequence:

PU(H) //ΩR //S1 × bS1 0 //K (Z, 3) //R //K (Z, 2)× K (Z, 2)
c∪bc //K (Z, 4).

Then if (E ,H) corresponds to f : M → R, we may pull this back over f :

ΩR //S1 × Ŝ1 //K (Z,3) //R

ΩM

Ωf

OO

//S1 × Ŝ1 //

=

OO

E ×M Ê //

OO

M,

f

OO

Define S := K (Z,3)/Ŝ1 and Ŝ := K (Z,3)/S1.

These are circle bundles over R; pulling them back over f gives E and
Ê , respectively. Further, Ωf lifts:

ΩS

��

and ΩŜ

��
ΩM

==|||||||| Ωf //ΩR ΩR ΩMΩfoo

aaBBBBBBBB
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A new proof using equivariant homotopy theory A classifying space for pairs

Summary

1 S1 × Ŝ1 = ΩR/PU(H). So S1 × Ŝ1 is an ΩR-space.
2 Ωf : ΩM → ΩR is a homomorphism, as are the lifts to ΩS and ΩŜ.
3 E ×M Ê is the homotopy orbit space

E ×M Ê = (S1 × Ŝ1)hΩM = ΩM\ΩR/PU(H).

4 Similarly,

E = S1
hΩM = ΩM\ΩS/PU(H) and Ê = Ŝ1

hΩM = ΩM\ΩŜ/PU(H)

Corollary
There are equivalences

KH(E) ' (ΩS+ ∧PU(H) K)hΩM , KbH(Ê) ' (ΩŜ+ ∧PU(H) K)hΩM ,

and Kp∗(H)(E ×M Ê) ' (ΩR+ ∧PU(H) K)hΩM .
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A new proof using equivariant homotopy theory The map λ and the T-duality isomorphism

Definition
Let

λ : ΩR+ ∧PU(H) K → ΩR+ ∧PU(H) K

be right multiplication in K by 1 + β, where β is the Bott class.

Since ΩR/PU(H) = S1 × Ŝ1, λ induces multiplication by P in
K ∗(S1 × Ŝ1). λ is equivariant for the action of ΩM, so descends to

λ : Kp∗(H)(E ×M Ê)→ Kp∗(H)(E ×M Ê) ' Kbp∗(bH)(E ×M Ê)

We therefore get the T-duality isomorphism ΩM-equivariantly from

Σ(ΩS+ ∧PU(H) K)
p!

//ΩR+ ∧PU(H) K
λ //ΩR ∧PU(H) K

bp //ΩbS+ ∧PU(H) K

Σ(S1
+ ∧ K)

p!

//

'

OO

(S1 × bS1)+ ∧ K
1∧P //

'

OO

(S1 × bS1)+ ∧ K
bp //

'

OO

bS1
+ ∧ K

'

OO

which we saw was an equivalence in the warm-up.
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T-duality and Atiyah duality Classical Atiyah duality

Poincaré duality

Let h∗ be a homology theory and let M be a closed manifold which is
orientable with respect to h∗. Examine the diagram

M ×M M∆oo c //pt ,

Orientability of M provides a (Pontrjagin-Thom) shriek map for ∆:

h∗(M)⊗h∗ h∗(M)
× //h∗(M ×M)

∆!
//h∗−dim M(M)

c∗ //h∗−dim M(pt).

This is adjoint to a map h∗(M)→ Homh∗(hdim M−∗(M),h∗). When
h∗ = H∗(·; F) is singular homology with field coefficients, the target is
HomF(Hdim M−∗(M),F) ∼= Hdim M−∗(M); this is the Poincaré duality
isomorphism.

When h∗ is a homology theory consisting of geometric cycles, the
composite of the first two maps is interpreted as the transversal
intersection of those cycles in M, and is written

x t y := ∆!(x × y).
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T-duality and Atiyah duality Classical Atiyah duality

Atiyah duality

If e : M → RN is an embedding with normal bundle ν, we will write
M−TM for the Thom spectrum

M−TM := Σ−NMν ,

the desuspension of the Thom space of ν.

The Pontrjagin-Thom collapse map for ∆ is ∆! : M ×M → MTM , where
TM is the tangent bundle of M (masquerading as the normal bundle of
∆), and MTM is its Thom space. Adding ν and desuspending by N, we
get an intersection pairing

M+ ∧M−TM ∆!
//M+

c //S.

The adjoint map
a : M−TM → F (M+,S)

is an equivalence; this is Atiyah duality. It implies h-Poincaré duality
when M is h-orientable.
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T-duality and Atiyah duality T-duality as an intersection pairing

An intersection pairing for T-dual bundles

Consider the diagram

E × Ê

π×bπ
��

E ×M Ê

π̃
��

b∆oo

c

##GG
GG

GG
GG

G

M ×M M∆oo c //pt .

(1)

There is an umkehr map

∆̂! : K(H,−bH)(E × Ê)→ Kb∆∗(H,−bH)(E ×M Ê)TM .

Notice that ∆̂ = (p, p̂). Thus ∆̂∗(H,−Ĥ) = p∗(H)− p̂∗(Ĥ) = 0. So
Kb∆∗(H,−bH)(E ×M Ê) ' K ∧ (E ×M Ê+). Further,

K(H,−bH)(E × Ê) ' KH(E) ∧K K−
bH(Ê).

Desuspending by TM, we may form the composite

µ : KH(E)−TM ∧K K−
bH(bE)

b∆!
//K ∧ (E ×M

bE+)
(1+β)∧1//K ∧ (E ×M

bE+)
1∧c //K.
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T-duality and Atiyah duality T-duality as an intersection pairing

Theorem
The adjoint map

t : KH(E)−TM → FK(K−bH(Ê),K)

to µ is an equivalence.

This is precisely the T-duality isomorphism when M is spinC.

Remark
This allows us to think of µ as a nondegenerate pairing of K-modules.
However, µ∗ is not in general nondegenerate; e.g.:

µ∗ : K H
∗ (S3)⊗K∗ K−

bH
∗ (RP3)→ K∗

is degenerate, since the domain is Z/2⊗ Z/2, and the target is Z (in
different degrees, no less!).

A similar phenomenon occurs for torsion in singular cohomology, but it
is impossible for the entire cohomology ring to be torsion.
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Future directions

Questions

1 Can we prove similar results after changing the fibres from S1 to
other compact Lie groups?

2 Does this work at other cohomology theories, especially localised
K -theory, Morava K -theory, TMF?

3 In p-local K -theory, S2p−3 becomes a (p-compact) group
[Sullivan]. Does the same argument go through?

4 At Morava K (n)-theory, K (π,q) is a (K (n)-compact) group for
q < n and π a finite group [Ravenel–Wilson]...

5 What do these “exotic” intersection pairings tell us about the
K -local category?
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