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Topological field theories

The category Cobn of n-cobordisms:
- objects: oriented (n − 1)-dimensional manifolds;
- morphisms: oriented cobordisms (up to diffeomorphism)
between them.

The category Cobn is symmetric monoidal.

Definition

An n-dimensional TFT is a symmetric monoidal functor

Z : Cobn → Vect
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Classification of TFT in dim 1 and 2:

a 1-dimensional TFT can be reconstructed from a finite
dimensional vector space;

a 2-dimensional TFT can be reconstructed from a
commutative Frobenius algebra.

(an open version of TFT) an open 2-dimensional TFT can
be reconstructed from a noncommutative Frobenious
algebra.



Kan extension
and

classification
theorems

Michael
Batanin

Topological
field theories,
classical
results.

Kan
extensions

Internal Kan
extension

Applications

Topological field theories

Classification of TFT in dim 1 and 2:

a 1-dimensional TFT can be reconstructed from a finite
dimensional vector space;

a 2-dimensional TFT can be reconstructed from a
commutative Frobenius algebra.

(an open version of TFT) an open 2-dimensional TFT can
be reconstructed from a noncommutative Frobenious
algebra.



Kan extension
and

classification
theorems

Michael
Batanin

Topological
field theories,
classical
results.

Kan
extensions

Internal Kan
extension

Applications

Topological field theories

Classification of TFT in dim 1 and 2:

a 1-dimensional TFT can be reconstructed from a finite
dimensional vector space;

a 2-dimensional TFT can be reconstructed from a
commutative Frobenius algebra.

(an open version of TFT) an open 2-dimensional TFT can
be reconstructed from a noncommutative Frobenious
algebra.



Kan extension
and

classification
theorems

Michael
Batanin

Topological
field theories,
classical
results.

Kan
extensions

Internal Kan
extension

Applications

Topological field theories

Classification of TFT in dim 1 and 2:

a 1-dimensional TFT can be reconstructed from a finite
dimensional vector space;

a 2-dimensional TFT can be reconstructed from a
commutative Frobenius algebra.

(an open version of TFT) an open 2-dimensional TFT can
be reconstructed from a noncommutative Frobenious
algebra.



Kan extension
and

classification
theorems

Michael
Batanin

Topological
field theories,
classical
results.

Kan
extensions

Internal Kan
extension

Applications

Topological field theories

Proof.

n = 1. Restrict Z to the subcategory of connected
1-manifolds and prove that the rest of Z can be
reconstructed from this restriction.

n = 2. Restrict Z to the subcategory of 0-genus surfaces
and proved that the rest of Z can be reconstructed from
this restriction.
The subcategory of 0-genus surfaces is PROP for
commutative Frobenious algebras.
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Classical Kan extension

The situation reminds the situation in representation theory for
induced and restricted representation.

Given a subgroup i : H ⊂ G we have a restriction functor

res : Rep(G )→ Rep(H)

which has a left adjoint:

Ind : Rep(H)→ Rep(G ).
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Classical Kan extension

More generally, given a morphism between algebras

f : A→ B

we have two adjoint functors

f ∗ : Mod(B)→ Mod(A)

f! : Mod(A)→ Mod(B).

Many classification results amount to characterisation of the
image of f! (descent theory).
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Classical Kan extension

Let f : C → D be a functor between two (small) categories.
Let V be another category. There is an induced functor

resf : [D,V ]→ [C ,V ].

Definition

A left Kan extension

Lanf : [C ,V ]→ [D,V ]

is a left adjoint functor (if exists) to resf .

Example 1. If D = ΣG ,C = ΣH,V = Vect then Ind = LanΣi .
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Classical Kan extension

Example 2. If f : A→ B is a homomorphism of algebras
considered as a one object k-linear category.

Lanf (M) = f!(M) = B ⊗A M.

Classical pointwise formula for left Kan extension:

Lanf (g)(d) = colimf /dg∗(−).

Here, f /d is the slice category of f over d (homotopy or
lax-fiber of f over d .)
g∗ : f /d → V is the restriction of g on this fiber.
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Kan extensions in 2-categories.

Classical Kan Extension is not enough for classification results
in TFT because the kind of functors involved are symmetric
monoidal.

Generalisaton. Recall that a 2-category is the same as
Cat-enriched category.

Let K be a 2-category. And let f : C → D be a 1-cell in K .
For any V ∈ K it determines a functor

res : K (D,V )→ K (C ,V ).

Definition

A left adjoint to res is called left Kan extension along f . For a
given g : C → V the left Kan extension satisfies

K (Lanf (g), h) ' K (g , f · h)
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Kan extensions in 2-categories.
Examples

- If K = Cat the left Kan extension is classical left Kan
extension.

- If K = SymCat the category of symmetric monoidal
categories, symmetric monoidal functors and symmetric
monoidal transformation the Lanf is precisely the kind of
extension which we need for TFT classification results.

It may be a difficult task to compute Kan extensions in
2-categories more general than Cat.
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Kan extensions in 2-categories.

We will mostly interested in 2-categories which are coming as
models of some categorified algebraic theories.

Motivating example. The symmetric monoidal categories of
cobordisms in the definition of two dimensional TFT is a
PROP.

- Miracle!: in categorified algebraic theories we can compute
Kan extensions using the same classical formulas as in Cat.
This is particular true for operadic algebraic theories.

We will see that there is a general method for explicitly
computing left adjoint functors using Kan extensions in
categorified algebraic theories.
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Monads and their algebras

Let me start from a very general type of theories:
let C be a category and T : C → C be a functor.

Definition

A monad structure on T is a pair of natural transformations:
ε : Id → T and µ : T 2 → T which satisfy
µ · (µ⊗ 1) = µ · (1⊗ µ) and µ · (ε⊗ 1) = µ · (1⊗ ε).

Definition

An algebra of T is an object X ∈ C together with a morphism
k : TX → X which satisfy :

ε · k = IdX , k · µ = k · k.
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Monads and their algebras

A monad T is called cartesian if C has finite limits, T
preserves pullbacks and all naturality squares for unit and
multiplication of T are pullbacks.

Observation. If T is cartesian then there is a canonical
”categorification” Tc of T : this is a monad in the 2-category
of internal categories Cat(C ). It extends T from C considered
as a subcategory of discrete objects of Cat(C ).

Example. Let C = Set and let T be free monoid monad. T is
cartesian and Cat(Set) = Set. The monad Tc has strict
monoidal categories as its category of algebras.
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Internal algebras

An algebra of Tc is called categorical algebra of T .

Definition

An internal algebra of a monad T inside a categorical algebra
M of T is a lax-morphism of categorical T -algebras

1→ M.

Example 1. For the free monoid monad T an internal algebra
in a categorical algebra M is the same as a monoid in the
monoidal category M.

Example 2. Let C be a small category. There is a cartesian
monad T whose category of algebras are exactly [C , Set]. A
categorical algebras is a functor F : C → Cat. An internal
algebra is a section of Grothendieck construction

∫
F .
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Internal algebras

Fix a categorical algebra M. The internal algebras in M form a
category. This gives a 2-functor:

Int : Cat(AlgT )→ Cat

Theorem

The 2-functor is representable. The representing object HT is
given by a codescent object of the following diagram of
categorical T -algebras :

T (1)
�
�-T 2(1) T 3(1)

���
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Examples

Example 1. For the free monoid monad T the categorical
T -algebra HT is the category of all finite ordinals ∆.

Example 2. For the free nonsymmetric operad monad the
algebra HT is Stasheff’s operad of trees. Its geometric
realization is operad of associahedra.

Example 3. For the free cyclic operad the algebra HT is the
operad of planar cyclic graphs. Its geometric realization is
Stasheff’s cyclic A∞-operad (topological).
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Geometric morphisms and Kan extensions.

Let T be a cartesian monad on a category C and
let S be a cartesian monad on a category D.

Definition

A geometric morphism between categories of algebras of T and
S is a pair (r ,R) of right adjoint functors

r : C → D, R : AlgT → AlgS

such that the following square of right adjoints commutes:

AlgT

?

AlgS

?

-
R

C D-r

UT US
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Geometric morphisms and Kan extensions.

Let (r ,R) : AlgT → AlgS be a geometric morphism. It induces
a right adjoint between categorical algebras:

Rc : Cat(AlgT )→ Cat(AlgS).

Definition

Let A be a categorical T -algebra. An internal S-algebra in A is
an internal S-algebra in the categorical S-algebra Rc(A).

Example. A monoid in a symmetric monoidal category is an
internal algebra of free monoid monad inside a categorical
algebra of free commutative monoid.
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Geometric morphisms and Kan extensions.

Let IntS : AlgT → Cat be the functor of internal S-algebras.

Theorem

The functor IntS is representable. The representable object hS

is given by a codescent object of the following diagram of
categorical T -algebras:

G (1)
�
�-GT (1) GT 2(1)

���

Here G is the composite

D
l→ C

FT→ AlgT ,

l is left adjoint to r and FT is free T -algebra functor.
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Geometric morphisms and Kan extensions.

This theorem says that one can replace any internal S-algebra
A in a categorical T -algebra V by a T -functor

Ã : hS → V .

There is also a canonical T -functor

f T : hS → HT

Theorem

Let (r ,R) be a geometric morphism. Then the left adjoint to R

L : AlgS → AlgT

can be computed as a Kan extension of Ã along f T in the
2-category of categorical T -algebras.
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2-category of categorical T -algebras.



Kan extension
and

classification
theorems

Michael
Batanin

Topological
field theories,
classical
results.

Kan
extensions

Internal Kan
extension

Applications

Geometric morphisms and Kan extensions.

Corollary

L(A) = colimhS Ã.

Proof. The categorical T -algebra HS has a terminal object and
it is generated by it. Therefore, the calculation of Kan
extension amounts to the calculation of the colimit over the
fiber over 1 which is the whole hS .
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Geometric morphisms and Kan extensions.

This formula is especially useful for calculation of left derived
functors. In this case one can replace colimit by homotopy
colimit.

If we are interested in calculation of left derived functor on a
terminal S-algebra we have

Theorem

The left derived functor of L on 1 is given by bar conctruction

B(G ,T , 1).
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Observation on change of operads

Let O1 be a category of some sort of operads and O2 be
another category of operads and let R : O1 → O2 be a right
adjoint functor.

Let also V be another category such that for the objects of V
one can consider endomorphism operads EndO1(X ) ∈ O1, and
EndO2(X ) ∈ O2.

Moreover, let R preserves the endomorphism operads i.e.

EndO2(X ) ' REndO1(X ).
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Observation on change of operads

Let A ∈ O2. Then an A-algebra structure on X is given by

k : A→ EndO2(X ) ' REndO1(X ).

By adjunction this gives

L(A)→ EndO1(X ).

Therefore, the category of A-algebras in V is isomorphic to the
category of L(A)-algebras in V . So, if we are able to recognise
an operad B ∈ O1 as L(A) we can classify B-algebras as
A-algebras.

Many classification results follows from this simple fact.
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Two dimensional TFT

Alternative definition of 2-dimensional TFT: it is an algebra
over modular operad of two dimensional surfaces.
There is a forgetful functor

U : ModO(V )→ CycO(V ).

This is geometric morphism with left adjoint Mod .
It is not difficult to see that the modular operad Mod(1) is
exactly the operad of 2-dimensional surfaces. On the other
hand the algebras of cyclic operad 1 are exactly commutative
Frobenious algebras.
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Recognition of En-algebras

Recall that En-algebras are algebras over the operad of little
n-disks. The first recognition principle for En-algebras was
formulated by Stasheff :

- A topological space is a E1-algebra if and only if it is an
algebra of a contractible nonsymmetric operad. (Stasheff 1964)

- A topological space is an E∞-algebra if it is an algebra over a
contractible symmetric operad.(May 1972)

- A topological space is an E2-algebras if it is an algebra over a
contractible braided operad (Fiedorowicz 1992).

Theorem (Batanin, 2004)

A topological space is a En-algebra if it is an algebra over a
contractible n-operad.
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Recognition of En-algebras

The proof is based on a geometric morphism:

desn : SO(Top)→ On(Top)

which has left adjoint symn.
Here, SO(Top) is the category of symmetric operads in Top
and On(Top) is the category of n-operads in Top.
We would like to calculate the left derived functor of
symmetrisation Lsymn.
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Recognition of En-algebras

To compute the derived functor of symmetrisation we have to
choose a cofibrant replacement for 1. One can show that
geometric realization of HT , where T is free n-operad monad
on n-collections is such a replacement.

Moreover, symn(|HT |) is homotopy equivalent to the operad of
Fulton-MacPherson compactification of the moduli space of
configuration of points in <n, which is homotopy equivalent to
the little n-disks operad.

Therefore, the category of En-algebras is Quillen equivalent to
the category of symn(|HT |)-algebras. This proves the theorem.
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Higher braided operads and stabilization hypothesis

Stabilization hypothesis generalises classical Freudental
stabilisation theorem.

In Set one can consider only one level of commutativity
for monoids.

In Cat we have two levels: braided and symmetric
monoidal categories.

Breen-Baez-Dolan stabilization hypothesis predicts that in
Catk we will have exactly k + 1-levels of commutativity.
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Higher braided operads and stabilization hypothesis

Definition

An n-braided object in a symmetric monoidal model category
V is an algebra of a contractible n-operad.

For V = Catk an n-braided object is the same as n-braided
k-category.
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Higher braided operads and stabilization hypothesis

A contractible n-operad is an example of an n-braided operad.
If V is a monoidal model category then there exists a model
category of n-braided operads O loc

n (V ).
There is a geometric morphism

S∗ : O loc
n+1(V )→ O loc

n (V ).

Again we are interested in calculation of the derived functor of
left adjoint S!.

Theorem (Batanin,Berger,Cisinski)

Let V be a symmetric h-monoidal model category which is
k-truncated. Then there is a pair of Quillen equivalences S!,S

∗

between O loc
n (V ) and O loc

n+1(V ) for n ≥ k + 2.
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Higher braided operads and stabilization hypothesis

by adjunction we have a corollary

Corollary

The category of n-braided objects in V is Quillen equivalent to
the category of n + 1-braided objects in V .

For V = Topk ( k-truncated homotopy type) it gives
classical Freudental theorem.

For V = Catk (the category of k-category) this is the
Breen-Baez-Dolan stabilization hypothesis.



Kan extension
and

classification
theorems

Michael
Batanin

Topological
field theories,
classical
results.

Kan
extensions

Internal Kan
extension

Applications

Costello approach to open TCFT

K.Costello (2004) introduced a moduli space N̄ of Riemann
surfaces wit boundary. A space N̄g ,n,r is the moduli space of
Riemann surfaces of genus g with n boundary components and
r marked points on the boundary. We also allows to have
nodes on the boundary.
These spaces form modular operad. The algebra of this
modular operad is called open topological conformal field
theory.
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Costello approach to open TCFT

Let Mod : CycO(Top)→ ModO(Top) be the left adjoint to
the forgetful functor from modular of cyclic operads.

Theorem (Costello 2004)

LMod(1) ' H̄.

Corollary

The category of open topological conformal field theories is
Quillen equivalent to the category of Frobenious A∞-algebras.

Corollary

The category of open topological field theories is equivalent to
the category of Frobenious algebras.
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Challenge

Construct a higher dimensional operad whose algebras are
extended topological field theories.

Construct a higher dimensional operad whose algebras are
fully dualisabe objects.

Construct a geometric morphism between the categories of
these operads.

Prove Baez-Dolan cobordism hypothesis.
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