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Mirror symmetry and SYZ

5 string theories and M-theory linked by dualities

type IIA - IIB duality leads to Mirror symmetry between Calabi-Yau

manifolds X ⇐⇒ Y

Strominger Yau Zaslow conjecture: X and Y are special Lagrangian

fibrations over same base with dual fibres
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More dualities

Gukov, Yau and Zaslow: the M-theory equivalent of a special Lagrangian

fibration is a coassociative fibration of a G2-manifold

by ‘brane reduction’:

M-theory K3-fibration ⇐⇒ Heterotic T
3
-fibration + flux

M-theory T
4
-fibration ⇐⇒ IIB T

3
-fibration + flux

so we would like to know about coassociative fibrations and the possibility

of dual fibrations

coassociative ⇐⇒ coassociative ?

coassociative ⇐⇒ special Lagrangian + flux?
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A quick look at G2

here G2 means the compact form in SO(7)

stabiliser of a 3-form φ on R7

also preserves a 4-form ψ = ∗φ

standard 3-form:

φ = e
123

+ e
1
∧ (e

45
+ e

67
) + e

2
∧ (e

46
− e

57
) + e

3
∧ (−e

47
− e

56
)

standard 4-form:

ψ = e
4567

+ e
23
∧ (e

45
+ e

67
) + e

31
∧ (e

46
− e

57
) + e

12
∧ (−e

47
− e

56
)

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 19, 2010 7 / 39



A quick look at G2

here G2 means the compact form in SO(7)

stabiliser of a 3-form φ on R7

also preserves a 4-form ψ = ∗φ

standard 3-form:

φ = e
123

+ e
1
∧ (e

45
+ e

67
) + e

2
∧ (e

46
− e

57
) + e

3
∧ (−e

47
− e

56
)

standard 4-form:

ψ = e
4567

+ e
23
∧ (e

45
+ e

67
) + e

31
∧ (e

46
− e

57
) + e

12
∧ (−e

47
− e

56
)

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 19, 2010 7 / 39



A quick look at G2

here G2 means the compact form in SO(7)

stabiliser of a 3-form φ on R7

also preserves a 4-form ψ = ∗φ

standard 3-form:

φ = e
123

+ e
1
∧ (e

45
+ e

67
) + e

2
∧ (e

46
− e

57
) + e

3
∧ (−e

47
− e

56
)

standard 4-form:

ψ = e
4567

+ e
23
∧ (e

45
+ e

67
) + e

31
∧ (e

46
− e

57
) + e

12
∧ (−e

47
− e

56
)

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 19, 2010 7 / 39



A quick look at G2

here G2 means the compact form in SO(7)

stabiliser of a 3-form φ on R7

also preserves a 4-form ψ = ∗φ

standard 3-form:

φ = e
123

+ e
1
∧ (e

45
+ e

67
) + e

2
∧ (e

46
− e

57
) + e

3
∧ (−e

47
− e

56
)

standard 4-form:

ψ = e
4567

+ e
23
∧ (e

45
+ e

67
) + e

31
∧ (e

46
− e

57
) + e

12
∧ (−e

47
− e

56
)

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 19, 2010 7 / 39



A quick look at G2

here G2 means the compact form in SO(7)

stabiliser of a 3-form φ on R7

also preserves a 4-form ψ = ∗φ

standard 3-form:

φ = e
123

+ e
1
∧ (e

45
+ e

67
) + e

2
∧ (e

46
− e

57
) + e

3
∧ (−e

47
− e

56
)

standard 4-form:

ψ = e
4567

+ e
23
∧ (e

45
+ e

67
) + e

31
∧ (e

46
− e

57
) + e

12
∧ (−e

47
− e

56
)

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 19, 2010 7 / 39



Normed Algebras

An algebra over R is normed if it has an inner product such that

|xy | = |x ||y |

there are only four:

R - real numbers (1-d)

C - complex numbers (2-d)

H - quaternions (4-d)

O - octonions (8-d)
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G2 and the octonions

G2 and O are closely related:

G2 = Aut(O)

Im(O) is the 7-dimensional representation of G2

octonion multiplication gives rise to the cross product

× : Im(O)⊗ Im(O) → Im(O)

x × y = Im(xy)

Relation to the 3-form:

φ(x , y , z) = �x × y , z�
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Associative subspaces

A 3-dimensional subspace A ⊂ Im(O) is associative if one of the

(equivalent) holds:

A is closed under the cross product

Re(O)⊕A ⊂ O is a subalgebra

(an associative subalgebra � H)

A can be oriented such that φ|A = dvolA
i.e. A is a calibrated subspace with respect to the calibration φ
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Coassociative subspaces

A 4-dimensional subspace C ⊂ Im(O) is coassociative if one of the

(equivalent) holds:

C⊥ is associative

For x , y ∈ C, x × y ∈ C⊥

C is a calibrated subspace with respect to ψ: ψ|C = dvolC

φ|C = 0
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G2-structures

A G2-structure on a 7-manifold is a reduction of structure of TX to G2

each tangent space of X has the structure of Im(O)

X has:

a cross product × : TX ⊗ TX → TX

a Riemannian metric g

a 3-form φ ∈ Ω
3
(X )

a 4-form ψ = ∗φ ∈ Ω
4
(X )
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G2-manifolds

A G2-manifold is a Riemannian 7-manifold with holonomy in G2

G2 is one of the exceptional holonomy groups in Berger’s classification

so a G2-manifold X is a Riemannian 7-manifold with a G2-structure such

that

∇φ = 0

equivalently: X is a 7-manifold with a G2-structure such that

dφ = 0

dψ = 0
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Associative / Coassociative submanifolds

A 3-submanifold A → X is an associative submanifold if:

the tangent spaces of A are associative subspaces of TX

equivalently A is a calibrated submanifold wrt φ

similarly define coassociative submanifolds C → X

C is a calibrated submanifold wrt ψ

C is coassociative iff φ|C = 0
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First order deformations

Let C → X be a compact coassciative submanifold

then NC � ∧2
+T

∗C:

ν �→ ινφ|C

given a normal vector field ν, we can deform C in the direction ν

Theorem (McLean)

A normal vector field ν represents a first order deformation through

coassociative submanifolds iff

ινφ|C is closed,

hence a harmonic self-dual form.
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Moduli space of deformations

No obstructions to extending a first order deformation to an actual family

we then have a smooth moduli space M of deformations of C through

coassociative submanifolds

the tangent space TCM of M at C is naturally isomorphic to H2
+(C, R)

dim(M) = b
2
+(C)

notation: for X ∈ TCM let ωX be the corresponding harmonic form
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Moduli space metric

Let X ,Y ∈ TCM

define a metric gM on M:

gM(X ,Y ) =

�

C
ωX ∧ ωY

= �[ωX ] � [ωY ], [C]�

called the L
2

moduli space metric
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Local moduli space structure

For small enough deformations we can canonically identify cohomology of

each submanifold with a fixed C ∈ M

get a (locally defined) H
2
(C, R)-valued 1-form α:

TM� X �→ α(X ) = [ωX ] ∈ H
2
(C, R)

Theorem

α is closed, so (locally) we have a function

u : M→ H
2
(C, R)

such that α = du:

u∗(X ) = α(X ) = [ωX ]
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Local moduli space structure

Then we have

gM(X ,Y ) = �[ωX ] � [ωY ], [C]�

= �u∗(X ) � u∗(Y ), [C]�

so the moduli space metric is the pull-back under u of the intersection

form on H
2
(C, R)

M is immersed as a maximal positive definite submanifold of H
2
(C, R)
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Compact Fibrations

Theorem
Let X be compact and have holonomy = G2

then any coassociative fibration π : X → B must degenerate

(i.e. π can’t be a submersion everywhere)
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Proof (1)

Assume F → X → B is a non-degenerate fibration

Hol(X) = G2 ⇒ π1(X ) is finite

suffices to take X simply connected

also suffices to take F connected and B simply connected

Then B is a homotopy 3-sphere and F is simply connected
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Proof (2)

Leray-Serre spectral sequence ⇒ isomorphisms

i
∗

: H
2
(X , R) → H

2
(F , R)

π∗ : H
3
(B, R) → H

3
(X , R)

[φ] = cπ∗([dvolB ]), c �= 0,

�

B
dvolB = 1

then for a closed 4-form µ on X

�

X
µ ∧ φ = c

�

F
i
∗µ
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Proof (3)

Recall: for a G2-manifold (with b
1
(X ) = 0) the pairing

H
2
(X , R)⊗ H

2
(X , R) → R given by

�

X
α ∧ β ∧ φ

is negative definite

hence the intersection form on F is negative definite

(Donaldson): intersection form on F is diagonal

(i.e. of form diag(−1,−1, . . . ,−1))
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Proof (4)

Now X is spin and NF is trivial

⇒ F is spin

⇒ intersection form is even ⇒ b
2
(F ) = 0

also recall for a G2-manifold (again with b
1
(X ) = 0)

�

X
p1(X ) ∧ φ < 0

but this is

c

�

F
i
∗
p1(X ) = c

�

F
p1(F ) = 0

by Hirzebruch signature theorem ⇒ contradiction

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 19, 2010 26 / 39



Proof (4)

Now X is spin and NF is trivial ⇒ F is spin

⇒ intersection form is even ⇒ b
2
(F ) = 0

also recall for a G2-manifold (again with b
1
(X ) = 0)

�

X
p1(X ) ∧ φ < 0

but this is

c

�

F
i
∗
p1(X ) = c

�

F
p1(F ) = 0

by Hirzebruch signature theorem ⇒ contradiction

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 19, 2010 26 / 39



Proof (4)

Now X is spin and NF is trivial ⇒ F is spin

⇒ intersection form is even

⇒ b
2
(F ) = 0

also recall for a G2-manifold (again with b
1
(X ) = 0)

�

X
p1(X ) ∧ φ < 0

but this is

c

�

F
i
∗
p1(X ) = c

�

F
p1(F ) = 0

by Hirzebruch signature theorem ⇒ contradiction

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 19, 2010 26 / 39



Proof (4)

Now X is spin and NF is trivial ⇒ F is spin

⇒ intersection form is even ⇒ b
2
(F ) = 0

also recall for a G2-manifold (again with b
1
(X ) = 0)

�

X
p1(X ) ∧ φ < 0

but this is

c

�

F
i
∗
p1(X ) = c

�

F
p1(F ) = 0

by Hirzebruch signature theorem ⇒ contradiction

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 19, 2010 26 / 39



Proof (4)

Now X is spin and NF is trivial ⇒ F is spin

⇒ intersection form is even ⇒ b
2
(F ) = 0

also recall for a G2-manifold (again with b
1
(X ) = 0)

�

X
p1(X ) ∧ φ < 0

but this is

c

�

F
i
∗
p1(X ) = c

�

F
p1(F ) = 0

by Hirzebruch signature theorem ⇒ contradiction

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 19, 2010 26 / 39



Proof (4)

Now X is spin and NF is trivial ⇒ F is spin

⇒ intersection form is even ⇒ b
2
(F ) = 0

also recall for a G2-manifold (again with b
1
(X ) = 0)

�

X
p1(X ) ∧ φ < 0

but this is

c

�

F
i
∗
p1(X ) = c

�

F
p1(F ) = 0

by Hirzebruch signature theorem ⇒ contradiction

David Baraglia (ANU) Moduli of special Lagrangian and coassociative submanifolds July 19, 2010 26 / 39



Singularities

What do the singularities look like?

as an example of what to expect we construct compact coassociative

fibrations of G2-structures with torsion (dφ �= 0)

one would hope that metric could be adjusted to produce genuine

G2-manifolds
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Construction (1)

Take a holomorphic symplectic fibration π : M → CP2
of a Hyperkähler

8-manifold (e.g. the Hilbert scheme of an elliptic K3-fibration)

the fibration degenerates over a curve ∆ ⊂ CP2

then M is also a Spin(7)-manifold with 4-form

Φ =
1
2ω2

I +
1
2ω2

J −
1
2ω2

K

and π : M → CP2
is a fibration by Cayley 4-folds
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Construction (2)

Now take S
3 ⊂ CP2

that encloses a singularity of the curve

then S
3 ∩∆ is a smooth link

e.g. around a singularity x
3
+ y

2
= 0 get a trefoil knot

π−1
(S

3
) is an almost G2-manifold (dφ �= 0, dψ = 0) with coassociative

fibration degenerating over S
3 ∩∆

ψ closed =⇒ the fibres are minimal submanifolds, could we flow to a

fibration of a G2-manifold?
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Riemannian submersion case

Theorem
Let π : X → B be a coassociative fibration with compact fibres

B can be given a metric gB such that π : X → B is a Riemannian

submersion iff the fibres are Hyperkähler (so either T
4

or K3)

in this case B is the moduli space of deformations and

gB =
1

2vol(F )gL2
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Proof

Let F = π−1
(b) be the fibre over b ∈ B

pick a basis e1, e2, e3 for TbB, let ẽi be the horizontal lifts

let ωi = ιẽi φ|F be the corresponding harmonic forms, then

ωi ∧ ωj = 2g(ẽi , ẽj)dvolF

follows that we can find Hyperkähler forms iff π is a Riemannian

submersion
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let ωi = ιẽi φ|F be the corresponding harmonic forms, then

ωi ∧ ωj = 2g(ẽi , ẽj)dvolF
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Definition

Definition
A coassociative fibration π : X → B is semi-flat if

there is a T
4
-action of isomorphisms such that the orbits are the

fibres of π

π is a Riemannian submersion and B is the moduli space of deformations

(locally) we have the moduli space map

u : B → H
2
(T

4, R) � R3,3
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Local form (1)

Semi-flat fibrations are locally constructed from the following data:

an oriented 3-manifold B

u : B → H
2
(T

4, R) � R3,3
that maps TB to positive definite

subspaces

τ a positive constant (representing the fibre volume)
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Local form (2)

Give B the metric

gB =
1
2τ u

∗
(g3,3)

define a 3-form φ on B × R4/Z4

φ = dvolB + du

where u : B → H
2
(T

4, R) is thought of as a 2-form

u(b) = uij(b)dx
ij
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Local form (3)

φ is closed

φ has the correct algebraic form

Theorem
dψ = 0 iff u is a harmonic map

i.e. u : B → H
2
(T

4, R) is a minimal immersion

all semi-flat fibrations have this form locally
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Surface reduction

Suppose that u : B → R3,3
is conical:

B = (0,∞)× Σ

gB = dr
2
+ r

2
gΣ

this corresponds to a (positive definite) minimal surface in the quadric

Q = {x ∈ R3,3
|�x , x� = 1}
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Affine Toda equations

A particular class of minimal surfaces into Q correspond to the equations:

uzz = −e
v−u

− e
u,

vzz = qqe
−v

+ e
v−u.

where q is a holomorphic cubic differential

this is a set of affine Toda equations
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THANK YOU
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