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The Schwarz Lemma

We begin with a very important lemma in complex geometry, called the
Schwarz lemma. Let D denote the unit disc in C.

Lemma
(Schwarz Lemma). If f : D→ D is holomorphic and f (0) = 0 then

(i) |f (z)| ≤ |z | for all z ∈ D; and

(ii) |f ′(0)| ≤ 1.

Further, if either |f (z)| = |z | for some z 6= 0 or if |f ′(0)| = 1, then f is a
rotation; i.e., there exists θ ∈ R such that f (z) = e iθz for all z ∈ D.

The Schwarz lemma is a key ingredient in the proof of the Riemann
mapping theorem, and has many generalisations.



The Schwarz-Pick Lemma

An important generalisation of the Schwarz lemma is the Schwarz-Pick
lemma.

Lemma
(Schwarz-Pick Lemma). If f : D→ D is holomorphic, then

i ∣∣∣∣∣ f (z)− f (w)

1− f (z)f (w)

∣∣∣∣∣ ≤
∣∣∣∣ z − w

1− zw

∣∣∣∣ for all z ,w ∈ D

ii
|f ′(z)|

1− |f (z)|2
≤ 1

1− |z |2
for all z ∈ D.

with equality in each of (i) and (ii) if f ∈ Aut(D). If equality holds in (i)
for one pair of points z 6= w or if equality holds in (ii) at one point z
then f ∈ Aut(D).



The Poincaré distance on the unit disc

The Poincaré distance ρ on the unit disc D is given as follows. For all
z ,w ∈ D,

ρD(z ,w) = tanh−1
∣∣∣∣ z − w

1− zw

∣∣∣∣ .
A holomorphic mapping f : D→ D is distance-decreasing under the
Poincaré distance, as a consequence of the Schwarz-Pick lemma. That is,

ρD(f (z), f (w)) = tanh−1

∣∣∣∣∣ f (z)− f (w)

1− f (z)f (w)

∣∣∣∣∣
≤ tanh−1

∣∣∣∣ z − w

1− zw

∣∣∣∣
= ρD(z ,w)

Further, if f is biholomorphic, the distance ρD is invariant, that is,

ρD(f (z), f (w)) = ρD(z ,w).



The Poincaré distance is sometimes expressed in the form

ρD(z ,w) =
1

2
ln

1 +
∣∣∣ z−w
1−zw

∣∣∣
1−

∣∣∣ z−w
1−zw

∣∣∣ .
The infinitesimal Poincaré metric is given by

αD(z , v) =
|v |

1− |z |2
, for (z , v) ∈ T (D).

The unit disc equipped with the Poincaré distance (or metric) is a
fundamental example of a non-Euclidean geometry. That is, a geometry
in which the parallel postulate of Euclidean geometry does not hold.
Specifically, (D, ρD) is a model of hyperbolic geometry, or
Bolyai-Lobachevskii geometry.
Note: a mapping ρ : D × D → [0,∞) is a distance if

• ρ(z ,w) ≥ 0;

• ρ(z ,w) = ρ(w , z);

• ρ(z ,w) ≤ d(z , v) + d(v ,w); and

• ρ(z ,w) = 0 =⇒ z = w .

If the final axiom does not necessarily hold we call ρ a pseudodistance.



The Kobayashi pseudodistance

Let M denote a connected complex manifold.

For two points z ,w in M we define a chain from z to w as follows: a
collection of points z = p0, . . . , pk = w , points a1, b1, . . . , ak , bk ∈ D and
holomorphic mappings f1, . . . , fk from D into M such that fi (ai ) = pi−1
and fi (bi ) = pi for all i = 1, . . . , k .

The Kobayashi pseudodistance KM is then defined:

KM(z ,w) = inf

{
k∑

i=1

ρD(ai , bi ) : all chains in M

}



The Kobayashi pseudodistance

Figure: Measuring the Kobayashi pseudodistance

The Kobayashi pseudodistance is the infimum of the sum of the Poincaré
distance between ai and bi over all such chains.



Note that KM is a pseudodistance, and not always a true distance. It can
be shown, for example, that the Kobayashi pseudodistance between two
points in the complex plane is zero. That is, KC ≡ 0.

Definition
A Kobayashi-hyperbolic manifold is a complex manifold M for which the
pseudodistance KM is a true distance.

Some examples of manifolds that are Kobayashi-hyperbolic include:

• The unit disc D in the complex plane,
• The unit ball Bn in Cn,

• Bn :=
{

(z1, . . . , zn) ∈ Cn : |z1|2 + · · ·+ |zn|2 < 1
}

• Any bounded domain in Cn,

• For example, the domain Ω :=
{

(z ,w) ∈ C2 : |z | < 1, |w | < 1
1−|z|

}
.

Some examples of manifolds that are not Kobayashi-hyperbolic include:

• C and C∗,
• Cn,

• CPn,

• Any Oka manifold.



Importance

The Kobayashi pseudodistance is a pseudodistance on an arbitrary
complex manifold that in some sense captures the natural geometry of
the Poincaré distance on the unit disc.

The Kobayashi pseudodistance agrees with the Poincaré distance on the
unit disc.

More importantly, the Kobayashi pseudodistance shares with the Poincaré
distance the distance-decreasing property for holomorphic maps, that is,
for f : M1 → M2 we have

KM2(f (z), f (w)) ≤ KM1(z ,w)

for all z ,w ∈ M1. Similarly, we have equality where f is a
biholomorphism. That is,

KM2(f (z), f (w)) = KM1(z ,w)

for all z ,w ∈ M1.



Aut(M) is a Lie group

Consider a biholomorphic automorphism f : M → M. Then, of course,

KM(f (z), f (w)) = KM(z ,w)

for all z ,w ∈ M, and we say that KM is Aut(M)-invariant. This fact
allows us to prove a remarkable fact about the automorphism group of a
Kobayashi-hyperbolic manifold, which we now turn to.

Theorem
If M is Kobayashi-hyperbolic, its automorphism group Aut(M) is a real
Lie group in the compact-open topology.

Proof (sketch):

• It was shown by Kaup in 1967 that the action of Aut(M) on M is
proper if M admits a continuous Aut(M)-invariant distance function.

• The fact that the action of Aut(M) on M is proper implies that
Aut(M) is locally compact.

• It was shown by Bochner and Montgomery in 1946 that Aut(M) is a
Lie group whenever it is locally compact.



Classification of hyperbolic manifolds

We are interested in obtaining a complete classification of
Kobayashi-hyperbolic manifolds M with high-dimensional automorphism
group.

Let n := dimC M.

Let d(M) := dim Aut(M), i.e., d(M) is the real dimension of the
automorphism group of M.

In 1967, Kaup established an upper bound on d(M), given by
d(M) ≤ n2 + 2n, with equality if and only if M is biholomorphic to Bn.



As it turns out, there is a lacuna located immediately below the
maximum possible dimension. By a theorem of Isaev and Krantz from
2001, there exist no Kobayashi-hyperbolic manifolds M with
n2 + 3 ≤ d(M) < n2 + 2n.

In the early 2000s, Isaev completed an explicit classification of
Kobayashi-hyperbolic manifolds for d(M) in the range
n2 − 1 ≤ d(M) ≤ n2 + 2.

At the value d(M) = n2 − 2 the classification becomes infeasible. To see
this, consider Reinhardt domains in Cn, that is, domains invariant under
the rotations

zj 7→ e iϕj zj where ϕj ∈ R for j = 1, . . . , n.

Most Reinhardt domains have no automorphisms other than these
rotations, and hence have an n-dimensional automorphism group. In
particular, if D is a typical Reinhardt domain in C2, then
d(D) = 2 = n2 − 2. Such domains have uncountably many isomorphism
classes, and so cannot be explicitly described.



Homogeneity

We can continue the classification if we introduce the assumption of
homogeneity. A manifold M is homogeneous if the action of Aut(M) on
M is transitive.

• The group Aut(M) acts transitively on M if for every p, q ∈ M there
exists a f ∈ Aut(M) such that fp = q.

Placing this extra structure on Kobayashi-hyperbolic manifolds allows us
to exploit some very powerful results.



One more definition...

A Siegel domain of the second kind is an unbounded domain in Cn of the
form

S(Ω,H) :=
{

(z ,w) ∈ Ck × Cn−k : Im z − H(w ,w) ∈ Ω
}

for some 1 ≤ k ≤ n, some open convex cone Ω ⊂ Rk , and some
Ω-Hermitian form H = (H1, ...,Hk) on Cn−k .

• An open subset Ω ⊂ Rk is an open convex cone if it is closed with
respect to taking linear combinations of its elements with positive
coefficients.

• A Hermitian form H is called Ω-Hermitian if H(w ,w) ∈ Ω̄ \ {0} for
all non-zero w ∈ Cn−k .

A Siegel domain of the second kind is a multidimensional analogue of the
upper half-plane in C. Every Siegel domain of the second kind has a
bounded realisation, hence is Kobayashi-hyperbolic.



Two structure theorems

It was proved by Vinberg, Gindikin and Pyatetskii-Shapiro in 1963 that
every homogeneous bounded domain in Cn is biholomorphic to an affinely
homogeneous Siegel domain of the second kind.

This result was extended by Nakajima in 1985, where it was proved that
every homogeneous Kobayashi-hyperbolic manifold is biholomorphic to an
affinely homogeneous Siegel domain of the second kind.



The Automorphism group of a Siegel
domain

Let G (Ω) denote the automorphism group of the cone Ω.

Any holomorphic affine automorphism of S(Ω,H) has the form

(z ,w) 7→ (Az + a + 2iH(b,Bw) + iH(b, b),Bw + b),

with a ∈ Rk , b ∈ Cn−k , A ∈ G (Ω), B ∈ GLn−k(C), where

AH(w ,w ′) = H(Bw ,Bw ′)

for all w ,w ′ ∈ Cn−k .

A Siegel domain is affinely homogeneous if the above group of
holomorphic affine automorphisms acts on it transitively. We have an
explicit description of the Lie algebra of the above automorphism group,
denoted g(S(Ω,H)), which we consider now.



The algebra g = g(S(Ω,H)) admits a grading

g = g−1 ⊕ g−1/2 ⊕ g0 ⊕ g1/2 ⊕ g1,

with gν being the eigenspace with eigenvalue ν of ad ∂, where

∂ := z · ∂
∂z

+
1

2
w · ∂

∂w
.

Here

g−1 =

{
a · ∂

∂z
: a ∈ Rk

}
, dim g−1 = k,

g−1/2 =

{
2iH(b,w) · ∂

∂z
+ b · ∂

∂w
: b ∈ Cn−k

}
, dim g−1/2 = 2(n − k),

and g0 consists of all vector fields of the form

(Az) · ∂
∂z

+ (Bw) · ∂
∂w

,

with A ∈ g(Ω), B ∈ gln−k(C) and

AH(w ,w ′) = H(Bw ,w ′) + H(w ,Bw ′)

for all w ,w ′ ∈ Cn−k .



Work involved

Explicit descriptions of the components g1/2 and g1 are also known, but
we omit them.

We provide a brief illustration of the work involved in determining the
contributions made to the classification. We begin with the given
automorphism group dimension. Take as an example d(M) = n2 − 3.
Recall that the definition of a Siegel domain is given by

S(Ω,H) :=
{

(z ,w) ∈ Ck × Cn−k : Im z − H(w ,w) ∈ Ω
}
.

Dimensional considerations allow us to rule out a large number of
possibilities. In this case, the cases we need to consider are the following:

• k = 2, n ≥ 4,

• k = 3, n = 4,

• k = 3, n = 5,

• k = 4, n = 4.

Let us take as an example k = 3, n = 4.



Homogeneous open convex cones

k = 2: Ω1 :=
{

(x1, x2) ∈ R2 : x1 > 0, x2 > 0
}

, where the algebra g(Ω1)
consists of all diagonal matrices, hence dim g(Ω1) = 2,

k = 3: (i) Ω2 :=
{

(x1, x2, x3) ∈ R3 : x1 > 0, x2 > 0, x3 > 0
}

, where the algebra
g(Ω2) consists of all diagonal matrices, hence dim g(Ω2) = 3,

(ii) Ω3 := Λ3 =
{

(x1, x2, x3) ∈ R3 : x2
1 − x2

2 − x2
3 > 0, x1 > 0

}
, where

one has g(Ω3) = c(gl3(R))⊕ so1,2, hence dim g(Ω3) = 4; here for any
Lie algebra h we denote by c(h) its centre,

k = 4: (i) Ω4 :=
{

(x1, x2, x3, x4) ∈ R4 : x1 > 0, x2 > 0, x3 > 0, x4 > 0
}

,
where the algebra g(Ω4) consists of all diagonal matrices, hence we
have dim g(Ω4) = 4,

(ii) Ω5 :=
{

(x1, x2, x3, x4) ∈ R4 : x2
1 − x2

2 − x2
3 > 0, x1 > 0, x4 > 0

}
,

where the algebra g(Ω5) = (c(gl3(R))⊕ so1,2)⊕ R consists of
block-diagonal matrices with blocks of sizes 3× 3 and 1× 1
corresponding to the two summands, hence dim g(Ω5) = 5,

(iii) Ω6 := Λ4 =
{

(x1, x2, x3, x4) ∈ R4 : x2
1 − x2

2 − x2
3 − x2

4 > 0, x1 > 0
}

,
where g(Ω6) = c(gl4(R))⊕ so1,3, hence dim g(Ω6) = 7.



Take k = 3, n = 4. Then S(Ω,H) is given by

S(Ω,H) =
{

(z ,w) ∈ C3 × C : Im z − H(w ,w) ∈ Ω
}
.

So we need to consider every Siegel domain corresponding to each cone
in R3. These are the following two:

D =
{

(z ,w) ∈ C3 × C : Im z − H(w ,w) ∈ Ω2

}
and

D ′ =
{

(z ,w) ∈ C3 × C : Im z − H(w ,w) ∈ Ω3

}
.

Typically, we proceed by computing g1/2 or g1 for the domain (and hence
the dimension of the Lie algebra) and comparing with the automorphism
group dimension (in this case d(M) = n2 − 3).



As the automorphism group dimension progresses downwards, we need to
consider homogeneous open convex cones of higher and higher dimension.
At a certain point, it was necessary to consider five-dimensional cones.

In particular, the following two:

Ω7 :=
{

(x1, x2, x3, x4, x5) ∈ R5 : x1 > 0, x1x2 − x24 > 0,

x1x2x3 − x3x
2
4 − x2x

2
5 > 0

}
,

and

Ω8 :=
{

(x1, x2, x3, x4, x5) ∈ R5 : x1 > 0, x1x2 − x24 > 0, x1x3 − x25 > 0
}
.

These are referred to as the Vinberg cone and dual Vinberg cone in the
literature.



We provide a table of the classification so far. In doing so, we use the
following notation:

Let B1 denote the open unit disc D in C.

Let B2 denote the open unit ball in C2, etc.

Note further that

T3 :=
{

(z1, z2, z3) ∈ C3 : (Im z1)2 − (Im z2)2 − (Im z3)2 > 0, Im z1 > 0
}
,

T4 : =
{

(z1, z2, z3, z4) ∈ C4 : (Im z1)2 − (Im z2)2 − (Im z3)2

− (Im z24 ) > 0, Im z1 > 0
}
,

and so on.

The contributions on the following slide are due to Isaev.



d(M) Contribution

n2 − 2 B1 × B1 × B2

B2 × B3

n2 − 3 T3 × B1

n2 − 4 B1 × B1 × B1 × B1

B1 × B1 × B3

T5

B2 × B4

n2 − 5 NONE
n2 − 6 D =

{
(z ,w) ∈ C3 × C : (Im z1 − |w |2)2

−(Im z1 − |w |2)2 − (Im z3)2 > 0,
Im z1 − |w |2 > 0

}
B1 × B2 × B2

B3 × B3

B1 × B1 × B4

B2 × B5

Table: The classification so far (Isaev)



Our contribution to the classification

d(M) Contribution

n2 − 7 T3 × B2

T4 × B1

n2 − 8 T6

B2 × B6

B1 × B1 × B5

B1 × B1 × B1 × B2

Table: The classification so far

Thank you!
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