DIRAC OPERATORS ON 4-MANIFOLDS

HANG WANG

1. The Dirac Operator on \mathbb{R}^4 and Clifford Algebra

Dirac operators are important geometric operators on a manifold. The Dirac operator D_A on the four dimensional Euclidean space $M = \mathbb{R}^4$ is the order one differential operator whose square $D_A \circ D_A$ is the Euclidean Laplacian $-\sum_{i=1}^4 \frac{\partial^2 \psi}{\partial x_i^2}$. However, this is not possible unless we allow coefficients for this linear operator to be matrix-valued. Let $M = \mathbb{R}^4$ be the four dimensional Euclidean space with global Euclidean coordinate (x_1, x_2, x_3, x_4) and $W \otimes L = M \times \mathbb{C}^4$ be the trivial 4-dimensional complex vector bundle over M, then the Dirac operator $D_A : C^{\infty}(\mathbb{R}^4, \mathbb{C}^4) \to C^{\infty}(\mathbb{R}^4, \mathbb{C}^4)$ is given by

(1.1)
$$D_A \psi = \sum_{i=1}^4 e_i \cdot \frac{\partial \psi}{\partial x_i}$$

where $e_i \in \text{End}(\mathbb{C}^4)$ is a 4×4 complex matrix satisfying $e_i \cdot e_j + e_j \cdot e_i = -2\delta_{ij}$. Explicitly, we take

$$e_1 = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i \\ i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \end{pmatrix},$$

and

$$e_3 = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad e_4 = \begin{pmatrix} 0 & 0 & 0 & i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}.$$

Let V be the dimension 4 Euclidean space of complex linear homomorphism from W_+ to W_- with orthonormal basis

$$\mathbf{e_1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{e_2} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \mathbf{e_3} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \mathbf{e_4} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

Denote by W_+, W_- two copies of \mathbb{C}^2 with the standard hermitian metric. Let $W = W_+ \oplus W_-$. Regard elements of V as complex linear homomorphisms from W_+ to W_- by sending $\mathbf{e_1}$ to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ etc. Construct the complex linear map

(1.2)
$$\theta: V \otimes \mathbb{C} \to \operatorname{End}(W) \qquad \theta(Q) = \begin{pmatrix} 0 & -\bar{Q}^T \\ Q & 0 \end{pmatrix} \qquad \theta(\mathbf{e_i}) = e_i.$$

Definition 1.1. The (complex) Clifford algebra of the dimension 4 Euclidean space V is $\mathbb{C}l(V) = \mathrm{End}(W)$ the 16-dimensional algebra over \mathbb{C} generated by e_1, e_2, e_3, e_4 subject to the relations $e_i \cdot e_j + e_j \cdot e_i = -2\delta_{ij}$.

Remark 1.2. As a vector space, $\mathbb{C}l(V) = \mathrm{End}(W) = \Lambda^0 V \otimes \mathbb{C} \oplus \cdots \oplus \Lambda^4 V \otimes \mathbb{C}$. The Clifford multiplication of e_i on forms is given by

(1.3)
$$e_i \cdot w = e_i \wedge w - \iota(e_i)w \qquad \iota(e_i) : \Lambda^k V \to \Lambda^{k-1} V \qquad (\iota(e_i)w, \theta) = (w, e_i \wedge \theta).$$

2. Spin^c Group and spin^c-structure

Let G be a Lie group and $r: G \to GL(\mathbb{F}^n)$ be a representation on a vector space \mathbb{F}^n .

Definition 2.1. A vector bundle E over a manifold M has a G-structure if there is an open covering $\mathcal{U} = \{U_{\alpha} : \alpha \in I\}$ of M and for each $\alpha, \beta \in I$, there is a transition function $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to G$ satisfying the cocycle condition

(2.1)
$$g_{\alpha\beta} \cdot g_{\beta\gamma} = g_{\alpha\gamma}, \quad on \quad U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$$

so that E is isomorphic to $\sqcup_{\alpha \in I} U_{\alpha} \times \mathbb{F}^n / \sim$ where $(u_{\alpha}, v_{\alpha}) \sim (u_{\beta}, v_{\beta})$ if $u_{\alpha} = u_{\beta} \in U_{\alpha} \cap U_{\beta}$ and $v_{\alpha} = g_{\alpha\beta}v_{\beta}$. A manifold M has a G-structure if the tangent bundle TM has a G-structure.

Example 2.2. Any real vector bundle of dimension m has a $GL(\mathbb{R}^m)$ -structure.

Example 2.3. A complex line bundle corresponds a U(1)-structure: $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to U(1)$ with the cocycle condition.

Example 2.4. If M is an oriented n-dimensional Riemannian manifold, then the tangent bundle TM of M carries a SO(n)-structure, i.e., there exists an open cover $\{U_{\alpha} : \alpha \in I\}$ of M and a transition function $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to SO(n)$ for each $\alpha, \beta \in I$ satisfying the cocycle condition so that TM is isomorphic to the gluing of the trivial \mathbb{R}^n bundles over U_{α} by the gluing function $g_{\alpha\beta}$.

We shall now introduce the spin group Spin(4) and the $spin^c$ -group $Spin(4)^c$ which will be used to define $spin^c$ structures on a four dimensional manifold M.

Let $V = \left\{ \begin{pmatrix} z & -\bar{w} \\ w & z \end{pmatrix} : z, w \in \mathbb{C} \right\}$ be the Euclidean 4-space with the natural inner product $\langle X, Y \rangle = \bar{X}^T Y$. The special unitary group SU(2) is defined as

(2.2)
$$SU(2) = \left\{ Q = \begin{pmatrix} z & -\bar{w} \\ w & \bar{z} \end{pmatrix} \in V : \det \frac{1}{2} [\bar{Q}^T Q] = |z|^2 + |w|^2 = 1 \right\}.$$

Definition 2.5. The Spin(4) group is the dimension 6 Lie group $SU(2) \times SU(2)$

(2.3)
$$Spin(4) = \left\{ \begin{pmatrix} A_+ & 0\\ 0 & A_- \end{pmatrix} : A_{\pm} \in SU(2) \right\}.$$

The $Spin(4)^c$ group is the dimension 7 Lie group

(2.4)
$$Spin(4)^{c} = \left\{ \begin{pmatrix} \lambda A_{+} & 0\\ 0 & \lambda A_{-} \end{pmatrix} : A_{\pm} \in SU(2), \lambda \in U(1) \right\}.$$

Spin(4) naturally represents on V via $(A_+, A_-) \mapsto (Q \mapsto A_-QA_+)$ and it is straight forward to check that the representation preserves the inner product on V, i.e.,

(2.5)
$$\langle A_-QA_+, A_-QA_+ \rangle = \langle Q, Q \rangle.$$

Hence the representation gives rise to a surjective homomorphism

$$(2.6) \qquad \rho: Spin(4) \to SO(V) \cong SO(4).$$

The kernel of the homomorphism is $\{(I, I), (-I, -I)\}$. Then we have the short exactly sequence

$$(2.7) 0 \to \mathbb{Z}_2 \to Spin(4) \to SO(4) \to 0.$$

The group Spin(4) is a double cover of SO(4). Topologically, Spin(4) is the simply connected manifold $S^3 \times S^3$.

Similarly, the group $Spin(4)^c$ has the representation

(2.8)
$$\rho^c : Spin(4)^c \to SO(V) \cong SO(4) \qquad \rho^c \left(\begin{pmatrix} \lambda A_+ & 0\\ 0 & \lambda A_- \end{pmatrix} \right) (Q) = (\lambda A_-)Q(\lambda A_+)^{-1}$$

In addition, there is a group homomorphism

(2.9)
$$\pi : Spin(4)^c \to U(1) \qquad \pi \begin{pmatrix} \lambda A_+ & 0\\ 0 & \lambda A_- \end{pmatrix} = \det(\lambda A_+) \det(\lambda A_-) = \lambda^2.$$

Then, we obtain the following short exact sequence

(2.10)
$$0 \to \mathbb{Z}_2 \to Spin(4)^c \to SO(4) \times U(1) \to 0.$$

The group $Spin(4)^c$ admits two irreducible unitary representations ρ_+, ρ_- on the 2-dimensional complex vector space W_+, W_- by

(2.11)
$$\rho\begin{pmatrix}\lambda A_{\pm} & 0\\ 0 & \lambda A_{\pm}\end{pmatrix}(w_{\pm}) = \lambda A_{\pm}w_{\pm} \qquad w_{\pm} \in W_{\pm}.$$

As unitary-length element of V are 2×2 unitary matrices, they can be regarded isometries from W_+ to W_- , we have an isomorphism of representation spaces

(2.12)
$$V \otimes \mathbb{C} \cong \operatorname{Hom}(W_+, W_-).$$

Definition 2.6. Let M be a 4-dimensional Riemannian manifold and $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to SO(4)$ is the associated SO(4)-structure of the tangent bundle TM. A $Spin^{(c)}$ structure on M is given by an open covering $\{U_{\alpha} : \alpha \in I\}$ of M and a collection of transition functions $\tilde{g}_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to Spin(4)^{(c)}$ such that $\rho^{(c)} \circ \tilde{g}_{\alpha\beta} = g_{\alpha\beta}$ and the cocycle condition is satisfied.

Example 2.7. If M has a spin structure defined by the transition function

(2.13)
$$\tilde{g}_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \mapsto Spin(4)$$

and L is a complex line bundle over M with hermitian metric and transition functions

$$(2.14) h_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to U(1)$$

Then a $spin^{c}$ -structure on M can be obtained by taking the transition function

(2.15)
$$\tilde{g}_{\alpha\beta}h_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to Spin(4)^{c}.$$

Definition 2.8. Let M be a 4-dimensional spin^c-manifold where the transition functions are given by $\tilde{g}_{\alpha\beta}$ for every $\alpha, \beta \in I$. Then the 2-dimensional complex vector bundles given by the transition functions $\rho \circ \tilde{g}_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to SU(2)$ are called the spin bundles, denoted $W_{\pm} \otimes L$. The complex line bundle given by the transition function $\pi \circ \tilde{g}_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to U(1)$ is called the determinant line bundle, denoted L^2 . W_{\pm} and L are called virtual vector bundles.

Let V be the 4-dimensional vector space as above, then the tangent bundle TM for a $spin^c$ four manifold M is isomorphic to $\sqcup_{\alpha} U_{\alpha} \times V / \sim$ where $(u_{\alpha}, v_{\alpha}) \sim (u_{\beta}, v_{\beta})$ if $u_{\alpha} = u_{\beta}$ and $v_{\alpha} = \tilde{g}_{\alpha\beta}v_{\beta}$. Therefore, in view of (2.12), we have

(2.16)
$$TM \otimes \mathbb{C} \cong Hom(W_+ \otimes L, W_- \otimes L).$$

3. Characteristic Classes and Spin^c-Structure

In this section¹, we introduce orientation, spin structure and $spin^c$ structure of a 4-manifold from the point of view of algebraic topology. We shall first review Cech cohomology $H^*(M,\underline{G})$ of a manifold M with coefficient in a sheaf \underline{G} of an abelian group G on M.

Let $\mathcal{U} = \{U_{\alpha} : \alpha \in I\}$ be a open cover of M. Associate a simplicial complex to the cover \mathcal{U} , i.e., $[\alpha_0 \alpha_2 \cdots \alpha_n]$ spans an *n*-simplex in $C_n(\mathcal{U})$ if and only if $U_{\alpha_0} \cap \cdots \cap U_{\alpha_n} \neq \emptyset$. Let G be an abelian group and \underline{G} denotes the sheaf of G. Define the *n*-cochains to be the set $C^n(\mathcal{U})$ of continuous sections on $C_n(\mathcal{U})$ with coefficients in \underline{G} :

(3.1)
$$f_{\alpha_0 \cdots \alpha_n} : U_{\alpha_0} \cap \cdots \cap U_{\alpha_n} \to \underline{G}$$

which satisfy $f_{\dots\alpha\dots\beta\dots} = f_{\dots\beta\dots\alpha\dots}^{-1}$. The *n*-th coboundary map $\delta_n : C^n(\mathcal{U}) \to C^{n+1}(\mathcal{U})$ is given by

$$[\delta_n f]_{\alpha_0 \cdots \alpha_{n+1}} = \prod f_{\alpha_0 \cdots \hat{\alpha}_i \cdots \alpha_n}^{(-1)^i}.$$

The *n*-th Cech cohomology of the cover \mathcal{U} is defined by

(3.3)
$$H^{n}(\mathcal{U},\underline{G}) = [ker\delta_{n}: C^{n}(\mathcal{U}) \to C^{n+1}(\mathcal{U})]/[im\delta_{n-1}: C^{n-1}(\mathcal{U}) \to C^{n}(\mathcal{U})].$$

 $^{^1\}mathrm{I}$ would like to thank my colleagues Nick Buchdahl and David Roberts for clarifying a few issues of the lecture notes.

The Cech cohomology of M with coefficient in \underline{G} is defined by the direct limit of the group $H^n(\mathcal{U},\underline{G})$ over finer and finer coverings. If we assume in addition that any finite intersection of elements of the open cover \mathcal{U} , the *p*-th cohomology of this intersection with values in \underline{G} is 0 of all p > 0. Then the Cech cohomology of M and the Cech cohomology of the cover \mathcal{U} coincide:

(3.4)
$$H^n(X,\underline{G}) \cong H^n(\mathcal{U},\underline{G})$$

An open cover \mathcal{U} satisfying this condition is called a *good cover*. In the situations to be used in this talk, this condition can be replaced by $U_{\alpha_0} \cap U_{\alpha_2} \cap \cdots \cup U_{\alpha_n}$ is either empty or contractible. The simplicial complex corresponding to a good cover reflects the topological feature of M. For example, when $M = S^1$, one can find a good cover whose corresponding simplicial complex is a triangle.

Remark 3.1. Let \mathcal{U} be a good cover of M and let G be a discrete abelian group. The singular cohomology $H^n_{sing}(M,\underline{G})$ is isomorphic to the Cech cohomology $H^n(M,\underline{G})$.

To simplify the notation, in the following we shall now not distinguish the notation for the sheet \underline{G} and the group G.

Example 3.2 (Principal G-bundle/Vector bundle with G-structure). f is a 1-cocycle if $f \in C^1(\mathcal{U})$ and $\delta_1 f = e$, i.e.,

(3.5)
$$f_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to G \qquad (\delta_1 f)_{\alpha\beta\gamma} = f_{\beta\gamma} f_{\alpha\gamma}^{-1} f_{\alpha\beta} = e.$$

If a vector bundle E over M has a G-structure, then E gives rise to a class

$$(3.6) [E] \in H^1(X,G).$$

Note that if G is not abelian, $H^1(M, G)$ still makes sense, but it is just a set of equivalence classes of principal G-bundles over M (vector bundles with G-structure).

Example 3.3 (First Chern class of a complex line bundle). Let E be a complex line bundle over a manifold M. Then E has a U(1)-structure, in other words, $[E] \in H^1(M, U(1))$. Then we have a 1-cocycle $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to U(1)$ with cocycle condition $g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha} = 1$. Then there exists $h_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \mathbb{R}$ such that $g_{\alpha\beta} = e^{i2\pi h_{\alpha\beta}}$. Note that $h_{\alpha\beta} + h_{\beta\gamma} + h_{\gamma\alpha} \in \mathbb{Z}$ and may not be 0. So h is not a 1-cocycle. However, $h_{\alpha\beta\gamma} = h_{\alpha\beta} + h_{\beta\gamma} + h_{\gamma\alpha} : U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \to \mathbb{Z}$ is a 2-cocycle (check by exercise $(\delta_2 h)_{\alpha\beta\gamma\delta} = h_{\beta\gamma\delta} - h_{\alpha\gamma\delta} + h_{\alpha\beta\delta} - h_{\alpha\beta\gamma}$ is always equal to 0). The 2 cocycle $h_{\alpha\beta\gamma}$ gives rise to a class in $H^2(X,\mathbb{Z})$. This is referred to the first Chern class of E denoted by $c_1(E)$. We remark that the first Chern class map on complex line bundles over M gives rise to an isomorphism

(3.7)
$$H^1(M, U(1)) \cong H^2(M, \mathbb{Z}).$$

Example 3.4 (Second Stiefel-Whitney class). Let E be a vector bundle over M which carries a SO(4)-structure, then there exists 1-cocycle $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to SO(4)$. As Spin(4) is a 2-fold cover of SO(4) and $U_{\alpha} \cap U_{\beta}$ is contractible, we can locally lift $g_{\alpha\beta}$ to $\tilde{g}_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to Spin(4)$. However, this is not a 1-cocycle as the cocycle condition $\tilde{g}_{\alpha\beta}\tilde{g}_{\beta\gamma} = \tilde{g}_{\alpha\gamma}$ may not be satisfied. However, we can construct a 2-cocycle by

(3.8)
$$\tilde{g}_{\alpha\beta\gamma} = \tilde{g}_{\alpha\beta}\tilde{g}_{\beta\gamma}\tilde{g}_{\gamma\alpha} : U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \to \mathbb{Z}_2 \subset Spin(4).$$

Check as an exercise that the cocycle condition

(3.9)
$$(\delta_2 \tilde{g})_{\alpha\beta\delta\gamma} = \tilde{g}_{\beta\gamma\delta} \tilde{g}_{\alpha\gamma\delta}^{-1} \tilde{g}_{\alpha\beta\delta} \tilde{g}_{\alpha\beta\gamma}^{-1} = e$$

is satisfied. The class of this 2-cocycle $\tilde{g}_{\alpha\beta\gamma}$ in $H^2(M,\mathbb{Z}_2)$ is called the second Stiefel-Whitney class of the vector bundle E, denoted $w_2(E)$.

Lemma 3.5. Let $\{e\} \to K \to G \to G' \to \{e\}$ be a short exact sequence of groups where K is abelian. Then the following natural map is exact

(3.10)
$$H^1(M,G) \to H^1(M,G') \to H^2(M,K)$$

Theorem 3.6. If M is an oriented Riemannian 4-manifold, then M has a spin structure if and only if the second Stiefel-Whitney class $w_2(TX)$ vanishes.

Proof. As $0 \to \mathbb{Z}_2 \to Spin(4) \to SO(4) \to 0$, then by Lemma 3.5 we have

$$(3.11) H1(M, Spin(4)) \to H1(M, SO(4)) \to H2(M, \mathbb{Z}_2)$$

exact. One observe that the vanishing of $w_2(TM)$ means that $[TM] \in H^1(M, SO(4))$ is an image of some element of $H^1(M, Spin(4))$.

Theorem 3.7. If M is an oriented Riemanian 4 manifold, then M has a spin^c structure if and only if there exists a complex line bundle E over M, so that the \mathbb{Z}_2 reduction of its first Chern class is equal to the second Stiefel-Whitney class of TM.

Proof. Denote by $r_* : H^2(M, \mathbb{Z}) \to H^2(M, \mathbb{Z}_2)$ the \mathbb{Z}_2 -reduction. Note that the reduction of the first Chern class is equal to the second second Stiefel-Whitney class because of the following commuting diagram:

$$\begin{array}{cccc} H^1(M, U(1)) & \stackrel{\sigma}{\longrightarrow} & H^1(M, U(1)) & \stackrel{w_2}{\longrightarrow} & H^2(M, \mathbb{Z}_2) \\ c_1 & & c_1 & & = \downarrow \\ H^2(M, 2\mathbb{Z}) & \stackrel{\times 2}{\longrightarrow} & H^2(M, \mathbb{Z}) & \stackrel{r_*}{\longrightarrow} & H^2(M, \mathbb{Z}_2) \end{array}$$

as a result of the short exact sequences $0 \to \mathbb{Z}_2 \to U(1) \to U(1) \to 0$ and $0 \to 2\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}_2 \to 0$. As $0 \to \mathbb{Z}_2 \to Spin(4)^c \to SO(4) \times U(1) \to 0$, we have the following exact sequence of homomorphisms:

(3.12)
$$H^1(M, Spin(4)) \to H^1(M, SO(4)) \oplus H^1(M, U(1)) \to H^2(M, \mathbb{Z}_2).$$

The manifold having a spin structure means that the existence of a spin structure for a principal $Spin(4) \times U(1)$ -bundle, i.e., $w_2(TM) + w_2(E) = 0$. The theorem is proved when we observe that the vanishing of $w_2(TM) + r_*c_1(E)$ means that $[TM] \in H^1(M, SO(4))$ is an image of some element of $H^1(M, Spin(4)^c)$.

Remark 3.8. Spin^c structure is a topological property true for many manifolds. For example, an (almost) complex manifold M (dimension n) has a canonical spin^c structure. In fact, the line bundle $L = \Lambda^n TM$ over M has the same first Chern character as that of the tangent bundle TM. Moreover, $c_1(TM)$ is a canonical lift of $w_2(X)$ to $H^2(M,\mathbb{Z})$) (to see this, one needs to generalise $p_*(c_1(E)) = w_2(E)$ from a complex line bundle E to complex bundles of any dimension). Thus $p_*(c_1(\Lambda^n TM)) = w_2(TM)$ and by Theorem 3.7, the (almost) complex manifold M has a spin^c structure.

Theorem 3.9. Every oriented four manifold admits a spin^c-structure.

Proof. We shall prove the case when the manifold is simply connected. A proof in the general case can be found in *Spin Geometry* Appendix D by Lawson and Michelsohn. There is also a short proof by Teichner and Vogt.

The first integral homology for a simply connected manifold M vanishes, i.e., $H_1(M, \mathbb{Z}) \cong 0$. By the poincare duality $H^3(M, \mathbb{Z}) \cong H_1(M, \mathbb{Z})$, we have $H^3(M, \mathbb{Z}) \cong 0$. The short exact sequence $0 \to 2\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}_2 \to 0$ gives rise to the following long exact sequence

$$(3.13) \qquad \cdots \to H^2(M,\mathbb{Z}) \xrightarrow{p_*} H^2(M,\mathbb{Z}_2) \to H^3(M,\mathbb{Z}) \to \cdots .$$

The vanishing of the third cohomology of M implies that the \mathbb{Z}_2 reduction map p_* is surjective. Thus, given the second Stiefel-Whitney class $w_2(TM)$ in $H^2(M, \mathbb{Z}_2)$ we know the existence of a pre-image $\eta \in H^2(M, \mathbb{Z})$. In view of (3.7), this implies the existence of a complex line bundle L whose first Chern class is $c_1(L) = \eta$. Hence the \mathbb{Z}_2 -reduction of $c_1(L)$ coincides with $w_2(TM)$. Therefore, the manifold M carries a spin^c structure by Theorem 3.7.

4. DIRAC OPERATORS

Definition 4.1. A connection on a vector bundle E (with G-structure) defined by a covering $\{U_{\alpha} : \alpha \in I\}$ and transition functions $\{g_{\alpha\beta} : \alpha, \beta \in I\}$ is a collection of differential operators

$$(4.1) \qquad \qquad \{d + \omega_{\alpha} : \alpha \in I\}$$

where d is the exterior derivative and ω_{α} takes values in the Lie algebra of G.

Let M be a 4-dimensional Riemannian manifold with a $spin^c$ structure and a $spin^c$ connection $d_A = \nabla^A$ on the spin bundle $W \otimes L$.

Definition 4.2. The Dirac operator $D_A : \Gamma(W \otimes L) \to \Gamma(W \otimes L)$ with coefficient in the line bundle L is defined by

(4.2)
$$D_A(\psi) = \sum_{i=1}^4 e_i \cdot d_A \psi(e_i) = \sum_{e_i}^4 e_i \cdot \nabla_{e_i}^A \psi.$$

where e_i is an orthonormal basis of TM.

Note that the Dirac operator divides into two pieces: $D_A^+ : \Gamma(W_+ \otimes L) \to \Gamma(W_- \otimes L)$ and $D_A^- : \Gamma(W_- \otimes L) \to \Gamma(W_+ \otimes L)$.

As in the Hodge theory, the theory of elliptic operators implies the kernels $kerD_A^+$ and $kerD_A^$ are finite dimensional complex vector spaces. we define the index of D_A to be

(4.3)
$$\operatorname{ind} D_A^+ = \dim(\ker D_A^+) - \dim(\ker D_A^-).$$

Theorem 4.3 (Atiyah-Singer index theorem). If D_A is a Dirac operator with coefficients in a line bundle L on a compact oriented four manifold, then

(4.4)
$$\operatorname{ind} D_A^+ = -\frac{1}{8}\tau(M) + \frac{1}{2}\int_M c_1(L)^2.$$

where $\tau(M) = b_{+} - b_{-}$ is the signature of M, i.e., signature of the map

(4.5)
$$H^2(M,\mathbb{R}) \times H^2(M,\mathbb{R}) \to \mathbb{R} \qquad (x,y) \mapsto \int_M x \cup y.$$

Remark 4.4. If M is spin and W is a spin bundle, then for any complex line bundle L, the bundle $W \otimes L$ has a $spin^c$ -structure. In this case, the determinant line bundle L^2 is indeed the tensor of L with L. However, if M is $spin^c$ and not spin, the determinant line bundle L^2 make sense even though L is not a genuine bundle (in this case, L is called a virtual vector bundle). In this case we can replace $c_1(L)$ by $\frac{1}{2}c_1(L^2)$ using the following lemma. The proofs of the lemma simply follows from $g_{\alpha\beta} = e^{i2\pi h_{\alpha\beta}}$, the relation between the transition functions of a line bundle and the transition functions of its first Chern class.

Lemma 4.5. Let L_1, L_2 be complex line bundle over a manifold M, then $L_1 \otimes L_2$ is also a complex line bundle and $c_1(L_1 \otimes L_2) = c_1(L_1) + c_2(L_2)$.