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Introduction

I will attempt to describe a tool in quantum field theory.

What is the tool good for? What does it do? How does it work?
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1 Quantum Field Theory: The Problem

Describe briefly the problem here - quantum field theory is powerful but relies on functional integrals.
What are functional integrals?

1.1 Classical Field Theory

In the Lagrangian approach to classical physics, a classical field theory is specified by three pieces of
information:

• an underlying spacetime manifoldM ;

• a space of fields F , usually given by sections of some sheaf or bundle onM and endowed with
the structure of an infinite dimensional manifold; and

• an action functional S : F → R.

The action functional is usually required to satisfy a locality criterion, meaning that the action S is
of the form

S[φ] =

∫
M
L(x, jnxφ)

for some function L—the Lagrangian—depending on the some finite-order jet space of F . Put plainly,
this means that S is an integral overM of a function that depends on the field φ ∈ F and only finitely
many of its derivatives.

The classical physics of such a system is completely captured by the critical locus of S, that is

Crit(S) := {φ ∈ F | dS[φ] = 0}.

Using the calculus of variations, in the case thatM is without boundary the critical locus of S is the
space of solutions to the Euler–Lagrange equations for S.

Example 1.1. The canonical example of a classical field theory is the Newtonian particle in R3. Here
the underlying spacetime manifold is the interval I = [0, 1], the space of fields is F := Map(I,R3),
the space of particle trajectories in R3 parametrised by t ∈ I , and the action is

S[φ] =

∫ 1

0

(m
2
‖φ′(t)‖2 − φ∗V (t)

)
dt

for φ ∈ F , where V : R3 → R is a smooth potential function and m is a positive real number—the
“mass” of the particle represented by φ. In this example, a critical point of S corresponds to a solution
of the Euler–Lagrange equations

mφ′′(t) = −∇V (φ(t)),

which is exactly Newton’s Second Law for a particle subject to a conservative force.
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1.2 From Classical to Quantum

A common technique for passing from a classical to a quantum theory is functional integration. This
technique takes the data of a Lagrangian classical field theory as above and purports to extract quan-
tum information from these data.

Suppose we are given a space of fields F on a spacetime manifold M together with a local action
functional S. An observable of this system is a function O : F → R and its expectation value is
given by a weighted integral of O over the space of fields. Specifically, we have

〈O〉 :=
1

ZS

∫
φ∈F
O(φ)eiS[φ]/~Dφ, (1)

where eiS[φ]/~Dφ is a purported measure on F and dividing by the partition function

ZS :=

∫
φ∈F

eiS[φ]/~Dφ

makes this into a probability measure on F . The main drawback of this perspective is that it is
thoroughly lacking in rigour. The measure theory of the infinite dimensional manifolds that we are
dealing with rarely has the properties that we desire and so the path integral must often be used
merely as a heuristic tool.

Nonetheless, physicists have developed a whole suite of computational tools built around path in-
tegrals that have been wildly successful1. The main idea underpinning most of these algorithms is
to take integrals in the sandbox environment of the finite dimensional setting, where everything is
rigorous and precise, and extrapolate into the infinite dimensional setting. The main challenge of
mathematical physicists is to formalise these techniques and couch them in terms of a theory that
provides a mathematical justification.

2 Path Integrals

In this section we will briefly discuss the perturbative evaluation of path integrals in quantum field
theory. The idea is that by expanding around a non-degenerate critical point of the action, we can
define the integral (1) as a formal power series in the expansion parameter ~. The coefficients in this
expansion are given by Gaussian expectation values.

As previously alluded to, this technique relies strongly on some of the properties of finite dimensional
Gaussian integrals, so we shall review these first.

2.1 Gaussian Integrals and Beyond...

As previously alluded, the perturbative expansion of path integrals in quantum field theory relies on
intuition gleaned from the finite-dimensional setting. Recall that if A is a non-degenerate matrix on
Rn, which is equipped with the standard Lebesgue measure dnx and inner product (·, ·), then∫

Rn
e
i
2 (x,Ax)dnx =

(2π)
n
2√

|detA|
e
iπ signA

4 ,

1Bar-Natan refers to “the successful religion of path integrals”.
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with signA the signature of A. In order to define expectation values with respect to a Gaussian
distribution, the first step is to define the partition function

Z(J) =

∫
Rn
e
i
2 (x,Ax)+(J,x)dnx =

(π~)
n
2√

| detA|
e
iπ signA

4 · e
1
2 (J,A−1J).

Then we obtain the expectation value

〈xi1 · · ·xik〉 =
∂

∂Ji1
· · · ∂

∂Jik
Z(J)|J=0

Z(0)
=

∂

∂J i1
· · · ∂

∂J ik
e
i
2 (J,A−1J)

∣∣∣∣
J=0

.

This implies the Wick Theorem, which says

〈xi1 · · ·xik〉 =

{
0 if k is odd
is
∑

σ∈Σ2s

1
2ss!

(
A−1

)iσ(1)iσ(2) · · ·
(
A−1

)iσ(2s−1)iσ(2s) if k = 2s is even
(2)

where Σ2s is the permutation group on 2s indices. The Wick Theorem is one of the most crucial
ingredients that goes into the perturbative evaluation of path integrals: it is the main result that un-
derpins the technique of Feynman diagrams.

Having detailed the relevant results in finite dimensions, we proceed to the infinite dimensional case.
The extension is made by taking the formula (2) verbatim. This makes sense whenever we have
an invertible operator A; usually A is a differential operator and G = A−1 is its Green function.
In the case that F = C∞(Σ) for some manifold Σ and A is a differential operator on F , then we
declare

〈φ(xi1) · · ·φ(xik)〉 :=

∫
φ∈F

e
i

2~
∫
Σ φAφφ(xi1) · · ·φ(xik)Dφ∫
φ∈F

e
i

2~
∫
Σ φAφDφ

:=

{
0 if k is odd
(i~)s

∑
σ∈Σ2s

1
2ss!G(xσ(1), xσ(2)) · · ·G(xσ(2s−1), xσ(2s)) if k = 2s is even

(3)

where φ is a function onΣ,Dφ denotes the “formal” Lebesguemeasure onF and the points xi1 , . . . , xik
are taken to be distinct. The reason for this latter requirement is that the Green function is often only
non-singular on the open configuration space

C0
2 (Σ) := Σ2 \∆.

In quantum field theory we are often interested in integrating such expectation values over the con-
figuration space. Making sure that these integrals converge is one of the problems tackled by regu-
larisation and renormalisation.

The next step in the “usual story” of Feynman diagrams is to use the Gaussian moments (3) to calculate
expressions of the form

〈O〉 :=

∫
φ∈F

e
i

2~S[φ]O(φ)Dφ∫
φ∈F

e
i

2~S[φ]Dφ

. (4)

This is done by first expanding O as a power series in φ around a non-degenerate critical point of
the action S and then using the expressions for the Gaussian moments. Making full sense of this also
requires some regularisation and renormalisation.
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2.2 Gauge-fixing Procedures

The above discussion hinged on the fact that the critical point that we expand around is non-degenerate.
Unfortunately, this most certainly does not occur when the physical system under consideration has
symmetries. The problem of gauge-fixing is to make sense of the perturbative expansions in the
presence of symmetries.

The BV formalism that is the subject of these notes is a way of solving the problem of gauge-fixing.
To better motivate this formalism and to give an introduction to some of the underlying ideas by way
of a quasi-historical digression, we first explain some simpler gauge-fixing procedures.

2.2.1 Gauge-fixing: Faddeev—Popov

One of the oldest and most well-known methods of gauge-fixing is the Faddeev—Popov method. We
shall explain this by way of an example.

Suppose that our spacetime manifoldM is equipped with a vector bundle E → M whose structure
group is the Lie group G (acting in some given representation). The group G of G-automorphisms of
this vector bundle is the gauge group of the theory. In this case, the space of fields of our theory is
usually the space of sections F = Γ(M,E) and the action is a G-invariant function on F , which can
be viewed as a function on the quotient F/G.

The problem now is to calculate expressions of the form∫
φ∈F

e
i
~S[φ]Dφ (5)

via the method of perturbative expansions. The symmetry of S under G implies that S is degenerate
at any critical point and so the perturbative expansion is not well-defined. A natural way to address
this problem is to understand (5) as an integral over the coset

1

volG

∫
{φ}∈F/G

e
i
~S[{φ}]D{φ} (6)

and this is exactly what the Faddeev—Popov procedure aims to do.

The main idea is the following: choose a smooth function F : F → A, where A = Lie(G) is the
Lie algebra of the gauge group, with the property that F−1(0) ⊂ F intersects each G-orbit precisely
once. The integral (6) is then rewritten as∫

φ∈F
δ0(F (φ)) · J(φ) · e

i
~S[φ]Dφ. (7)

In this expression, the term δ0 is the delta function at 0 ∈ A, which localises the integral to F−1(0).
The term J(φ) is the determinant of A(φ), that is dF (φ) restricted to the vertical tangent space
(realised as an endomorphism of A), and ensures invariance under deformations of F .

This can be cast in a more succinct fashion as the integral∫
FFP

e
i
~SFPDφDcDc̄Dλ (8)
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over the space of Faddeev–Popov fields

FFP := F ⊕A[1]⊕A∗[−1]⊕A∗ 3 (φ, c, c̄, λ).

In this expression, the Faddeev–Popov action

SFP[φ, c, c̄, λ] = S[φ] + 〈λ, F (φ)〉+ 〈c̄, A(φ)c〉

is non-degenerate at its critical point(s) and so allows for a well-defined perturbative expansion. In
this discussion, F is called a gauge-fixing function and the condition F = 0 is the gauge-fixing.

Example 2.1. As an example of the Faddeev–Popov method, consider the case where we have a finite-
dimensional space of fields F acted on by a finite-dimensional Lie group G. Suppose that we also
have a G-invariant action functional S : F → R.

The action of G on F induces a Lie algebra homomorphism g := Lie(G) → X(F). In terms of a
basis eα for g, we have

eα 7−→ viα(x)
∂

∂xi
∈ X(F). (9)

To make sense of the expression (6), we must pick an appropriate gauge-fixing function F : F → g.
Then (7) becomes ∫

x∈F
e
i
~S
∏
i,α

δ(Fα(x)) · det

(
vjα(x)

∂

∂xj
F β(x)

)
Dxi.

Introducing the Grassmann variables cα and c̄α of Z-degree 1 and −1 respectively and the variable
λα of Z-degree 0, we can write this last integral as∫

FFP
e
i
~SFP

∏
i,α

DxiDcαDc̄αDλα

where
SFP = S(x) + λαF

α(x) + c̄α
∂Fα

∂xi
viβ(x)cβ

and the space of Faddeev–Popov fields is FFP = F ⊕ g[1]⊕ g∗[−1]⊕ g∗.

2.2.2 Gauge-fixing: BRST

A second, more refined method of treating the problem of gauge fixing is the BRST formalism. The
framework of this formalism is as follows. We embed the manifold of classical fields F into the 0-th
degree of a Z-graded manifold FBRST. The Z-grading on FBRST is known in physics parlance as the
ghost number.

The Z-graded manifold is equipped with the extra information of a cohomological vector field. This
is a derivation Q on Fun(FBRST) that raises the Z-degree (ghost number) by 1 and squares to zero;
i.e. Q2 = 0. The Z-graded manifold FBRST is assumed to be equipped with a Q-invariant measure µ,
so that in particular ∫

FBRST
(Qf)µ = 0

for every f ∈ Fun(FBRST). The data (FBRST, Q) of the BRST formalism is related to the data of the
classical theory by the conditions
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• the classical action functional is a BRST cocycle, i.e. QS = 0; and

• FBRST is a resolution of F/G in the sense that there is an isomorphism

H0
Q(Fun(FBRST)) ∼= Fun(F/G).

Remark 2.2. This latter point is particularly interesting as it leads to the interpretation of the BRST
procedure as taking the derived quotient of a space by a Lie algebra action. This point of view is
currently being clarified by a number of researchers in the area.

Gauge-fixing in the BRST formalism proceeds as follows. First, we choose a gauge-fixing fermion,
which is a function Ψ ∈ Fun(FBRST) with Z-degree −1. Then since the measure µ is assumed to be
Q-invariant, we have ∫

FBRST
e
i
~Sµ =

∫
FBRST

e
i
~ (S+QΨ)µ.

The idea is to be cunning and choose a gauge-fixing fermion so that the right hand side of the above
equation allows for a perturbative expansion. The modified action

SBRST = S +QΨ

is called the BRST action. In this setting, we can prove (at least formally) that

1. the expectation values of Q-closed functions are gauge-fixing independent; and

2. the expectation values of Q-exact functions vanish.

We have therefore interpreted the path integral in the BRST formalism as some sort of cohomological
operation; this observation will shape our view of the BV formalism.

Example 2.3. We continue Example 2.1 in the setting of the BRST formalism. In this case,

FBRST = F ⊕ g[1]

and in coordinates (xi, cα) on FBRST the cohomological vector field is given by

Q = −cαviα(x)
∂

∂xi
+

1

2
fαβγc

βcγ
∂

∂cα

where the fαβγ are the structure constants of g in the basis eα (dual to cα). The condition

QS = 0

encodes the (infinitesimal) G-invariance of S and the condition Q2 = 0 encodes the Jacobi identity
for the fαβγ as well as the fact that (9) is a Lie algebra homomorphism. The idea is that the data of the
G-symmetry of the classical system is encoded in the cohomological vector field Q.

In order to perform gauge-fixing in this example, we need to write down a gauge-fixing fermion.
Since a gauge-fixing fermion must necessarily have Z-degree −1 (and the coordinates xi and cα have
non-negative degrees), we must extend the space FBRST of BRST fields. The idea is to do this in such
a way as to not change the Q-cohomology. For example, if we take

FBRST = F ⊕ g[1]⊕ g∗[−1]⊕ g∗ (10)
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with coordinates (xi, cα, c̄α, λα), and

Q = −cαviα(x)
∂

∂xi
+

1

2
fαβγc

βcγ
∂

∂cα
+ λα

∂

∂c̄α
(11)

then the Q-cohomology doesn’t change but we can now write down the gauge-fixing fermion

Ψ = c̄αF
α(x),

where F is the gauge-fixing function that we chose in Example 2.1. The BRST action is then

SBRST = S +QΨ = S(x) + λαF
α(x) + c̄α

∂Fα

∂xi
viβ(x)cβ

which agrees with our result from the Faddeev–Popov method.

Remark 2.4. In order to write down the gauge-fixing fermion Ψ in the above example, we had to
add the vector space g∗[−1] ⊕ g∗ to our space of BRST fields in (10). As we shall see below, we can
view this extra term as the Z-graded manifold T [1](g∗[−1]), whose ring of functions is Ω•(g∗[−1]).
The term that we added to the cohomological vector field Q in (11) corresponds to the de Rham
differential. Since g∗[−1] is contractible, this additional term does not change the Q-cohomology of
FBRST.

3 Batalin—Vilkovisky Quantisation

The Batalin—Vilkovisky formalism is a body of ideas for treating the problem of gauge-fixing using
homological algebra. In its first guise, which we shall describe presently, it may be viewed as a
far-reaching generalisation of the BRST formalism.

The essential ingredient of the BV approach is the space of BV fields FBV = T ∗[−1]FBRST. As
the shifted cotangent bundle of a Z-graded manifold, FBV is naturally an odd symplectic Z-graded
manifold and this structure is key to understanding this guise of the BV formalism. It is therefore
paramount at this point to review the crucial definitions.

3.1 A Digression on BV Manifolds

Definition 3.1. A Z-graded manifold is a locally ringed space (M,O) whose ring of functions is
locally isomorphic to

(U, C∞(U)⊗ S(V ∗)),

where U is an open subset of Rn and V is a Z-graded vector space.

Remark 3.2. Recall that for a Z-graded vector space V , the dual is the graded vector space given in
degree i by V ∗−i. The shift V [k] of V by k is the graded vector space given in degree i by Vi+k .

The symmetric algebra S(W ) generated by a graded vector space W is the quotient of the tensor
algebra onW by the tensor ideal generated by elements of the form

a⊗ b− (−1)|a||b|b⊗ a

where a, b ∈W are homogeneous of degree |a| and |b| respectively.
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Alternatively, we may view a Z-graded manifoldM as a sum of vector bundles

M =
⊕
k∈Z
Mk

over a smooth manifoldM0—the body ofM—only finitely many of which are non-zero. The ring of
functions onM is the graded ring of sections

Fun(M) := Γ(M0, S(M∗even))⊗C∞(M0) Γ(M0,Λ(M∗odd)),

whereMeven =
⊕

k∈ZM2k andModd =
⊕

k∈ZM2k+1 are the even and odd parts ofM, and S
and Λ denote the symmetric and exterior algebras respectively.

There are two important graded manifolds that we can associate to a given graded manifoldM. The
first of these is the shifted tangent bundle T [1]M. As a graded manifold, T [1]M is represented by
the sum of vector bundles

⊕
k∈Z(T [1]M)k overM0, where

(T [1]M)k =

{
TM0 ⊕M−1 ⊕M0 for k = −1

Mk ⊕Mk+1 for k 6= −1.

We define the ring of differential forms onM to be functions on the shifted tangent bundle

Ω•(M) := Fun(T [1]M).

A k-form onM is thus understood as a degree k element of Fun(T [1]M).

Remark 3.3. Contrast this definition to that of vector fields onM, which are given by derivations
of the algebra Fun(M). In particular, we can talk about vector fields on the shifted tangent bundle.
A particularly important example of a vector field on T [1]M is given by the de Rham differential.
Picking local coordinates xi on M, we get coordinates dxi on the fibre (considering T [1]M as a
bundle overM). Note that |dxi| = |xi|+ 1 for each i. The de Rham differential is then given by the
vector field

δ := dxi
∂

∂xi

acting on Fun(T [1]M). The de Rham differential raises the degree of functions on T [1]M by 1 and
squares to zero.

We note that in the case thatM = M is an ordinary manifold viewed as a graded manifold in the
obvious way, then defining Ω•(M) := Fun(T [1]M) and ddR = δ as above coincides exactly with the
usual construction of the de Rham complex onM .

Another important notion is the shifted cotangent bundle T ∗[−1]M of a graded manifoldM. This
is a graded bundle represented by the bundle

⊕
k∈Z(T ∗[−1]M)k overM0, where

(T ∗[−1]M)k =

{
T ∗M0 ⊕M1 ⊕ (M0)∗ for k = 1

Mk ⊕ (M1−k)∗ for k 6= 1.

If we choose coordinates xi onM and ξi are coordinates in the fibre of T ∗[−1]M (considered as a
bundle overM) then the degrees satisfy |xi|+ |ξi| = −1. We define the ring of polyvector fields on
M to be

V•(M) := Fun(T ∗[−1]M).
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As was the case with differential forms, this construction coincides with the usual one whenM = M
is an ordinary smooth manifold.

Definition 3.4. An odd symplectic manifold is a graded manifold N that is equipped with a 2-form
ω ∈ Ω•(N ) of total degree 1 and de Rham degree 2. We also require that N has an open covering
{Uα} such that in each Uα there is a Darboux coordinate system (xiα, ξ(α) i) in which ω is given by

ω =
∑
i

(−1)
|xi

(α)
|
δxi(α)δξ(α) i,

and for which the coordinate transition maps φαβ between Darboux coordinate systems are sym-
plectomorphisms, that is φ∗αβω = ω.

The shifted cotangent bundle T ∗[−1]M is the canonical example of an odd symplectic manifold,
with odd symplectic form given in local coordinates (xi, ξi) by

ω =
∑
i

(−1)|x
i|δxiδξi. (12)

By definition, every odd symplectic manifold is locally equivalent to some T ∗[−1]N , and in fact a
stronger global result holds

Theorem 3.5 (A. Schwarz). Every odd symplectic manifoldM is symplectomorphic to an odd sym-
plectic manifold of the form T ∗[−1]N , whereN may be chosen to be concentrated in even degrees.

In the same manner that ordinary symplectic forms induce a Poisson bracket on functions, an odd
symplectic form onM induces a Gerstenhaber bracket on the the algebra of functions Fun(M). In
the case of the canonical odd symplectic form (12), the bracket is given by

{f, g} :=
∑
i

f

[ ←−
∂

∂xi

−→
∂

∂ξi
−
←−
∂

∂ξi

−→
∂

∂xi

]
g (13)

for f, g ∈ Fun(M).

We recall

Definition 3.6. AGerstenhaber or odd Poisson algebra is aZ-graded commutative algebraA equipped
with a bilinear map {•, •} : A⊗A→ A such that for homogeneous a, b, c ∈ A

1. |{a, b}| = |a|+ |b|+ 1,

2. {a, b} = −(−1)(|a|+1)(|b|+1){b, a},

3. (−1)(|a|+1)(|c|+1){a, {b, c}}+ cyclic permutations of a, b, c = 0,

4. {ab, c} = a{b, c}+ (−1)|b|(|c|+1){a, c}b, and

5. {a, bc} = {a, b}c+ (−1)|b|(|a|+1)b{a, c}.

Therefore Fun(M) with the bracket {•, •} of (13) is a Gerstenhaber algebra.
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3.1.1 BV Manifolds and the BV Laplacian

Definition 3.7. A BV manifold2 is an odd symplectic manifold (M, ω) endowed with a measure µ
that is compatible with the odd symplectic form in the following sense. In the Darboux coordinates
(xi(α), ξ(α) i) on the chart Uα the measure µ coincides with the coordinate Berezin measure. That is

µ =
∏
i

Dxi(α) ·Dξ(α) i

on Uα. We moreover require that the coordinate transition functions φαβ between Darboux charts
are measure-preserving.

In the setting of a shifted cotangent bundle T ∗[−1]M equipped with the canonical odd symplec-
tic form ω. We view T ∗[−1]M as a BV manifold equipped with the measure µ given in the local
coordinates (xi, ξi) by

µ =
∏
i

DxiDξi, (14)

which is clearly compatible with the odd symplectic form (12).

The measure µ on a BV manifoldM defines a divergence operator on vector fields. Given a vector
field X ∈ X(M) (that is, a derivation X : Fun(M) → Fun(M)), we define its divergence (with
respect to the measure µ) as the function divµX ∈ Fun(M) such that∫

M
X(f)µ =

∫
M

divµX · fµ

for all f ∈ Fun(M). We then define the BV Laplacian as the operator

∆µ : Fun(M) −→ Fun(M)

that sends
f 7−→ ∆µf :=

(−1)|f |

2
divµ({f, •}).

In Darboux coordinates (xi, ξi) onM the BV Laplacian may be expressed as

∆µ =
∑
i

(−1)|x
i| ∂

∂xi
∂

∂ξi
. (15)

There are various relations that ∆µ satisfies, amongst which are

{f, g} = (−1)|f |∆µ(fg)− (−1)|f |∆µ(f)g − f∆µ(g)

and
∆µ({f, g}) = {∆µ(f), g}+ (−1)|f |+1{f,∆µg}

for all homogeneous f, g ∈ Fun(M).
2this is commonly referred to as an SP-manifold in the literature.
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3.1.2 Lagrangian Submanifolds and Integration

Suppose we are given the BV manifold (M, ω, µ) (or, more generally, an odd symplectic manifold
(M, ω)). A Lagrangian submanifolds ofM, as in ordinary symplectic geometry, is a submanifold
L ⊂M such that ω|L = 0 and dimL = 1

2 dimM.

In the case thatM = T ∗[−1]F is a shifted cotangent bundle there is an important class of Lagrangian
submanifolds defined via gauge-fixing functions. Suppose thatM = T ∗[−1]F is given in local Dar-
boux coordinates by (xi, ξi). Then F ⊂ T ∗[−1]F is itself a Lagrangian submanifold. More generally,
given a gauge-fixing function Ψ ∈ Fun(F) of degree −1 we may associate to it the Lagrangian
submanifold

LΨ :=

{
(xi, ξi)

∣∣∣∣ ξi = − ∂

∂xi
Ψ(x)

}
.

An important feature of BV manifolds is that every Lagrangian submanifold has an induced measure.
If L ⊂M is a Lagrangian submanifold of the BV manifoldMwith measure µ, we denote the induced
measure on L by √µL. The following “graded” version of the Stokes theorem is really the key to the
BV formalism:

Theorem 3.8 (Batalin—Vilkovisky, Schwarz). Let (M, ω, µ) be a BV manifold. Let L,L′ ⊂ M be
Lagrangian submanifolds with induced measures √µL and √µL′ respectively. Then

1. if f ∈ Fun(M) is ∆µ-closed and L and L′ are homologous (inM0) then∫
L
f
√
µL =

∫
L′
f
√
µL′ .

That is, the integral of a ∆µ-closed function over a Lagrangian submanifold L is invariant
under infinitesimal deformations of L; and

2. if f ∈ Fun(M) is ∆µ-exact then ∫
L
f
√
µL = 0.

3.1.3 The Master Equation

From now on, we consider the ring Fun(M)J~K of formal power series in ~. Let (M, ω, µ) be a BV
manifold and take a function of the form

S = S0 + S1~ + S2~2 + · · · ∈ Fun(M)J~K (16)

that is regular in ~. We say that S satisfies the quantum master equation (and hence is a quantum
master function) if

∆µe
i
~S = 0 (17)

or, equivalently
{S, S}+ i~∆µS = 0, (18)

recalling the bracket {•, •} of (13).

12



3.2 BV Quantisation

Having reviewed the necessary ingredients, we now describe the BV formalism. The central idea of
the BV formalism is to take a classical field theory, specified by the data (M,Fcl, Scl), and construct
from it a BV manifold. Gauge-fixing is then carried out by integrating over Lagrangian submanifolds
via Theorem 3.8, as we describe presently.

To construct the required BV manifold, we embed the space of fields F of the classical theory into
the shifted cotangent bundle

FBV := T ∗[−1]FBRST. (19)

That is, we first carry out the BRST procedure to obtain the space FBRST of BRST fields and then
we take its shifted cotangent bundle. Note that FBV is canonically a BV manifold, equipped with odd
symplectic form

ω =
∑
i

(−1)|Φ
a|δΦaδΦ†a (20)

and compatible measure
µ =

∏
i

DΦaDΦ†a. (21)

In these expressions, the Φa are coordinates on FBRST (the fields) and the Φ†a are the corresponding
coordinates on the fibres of T ∗[−1]FBRST (the anti-fields). Note that the BV Laplacian is given simply
by

∆ =
∑
a

(−1)|Φ
a| ∂

∂Φa

∂

∂Φ†a
. (22)

The next thing that we need is a quantummaster function S that is consistent with the classical action
Scl in the following sense

S0|FBRST = Scl.

Gauge-fixing in the BV formalism is carried out by integrating over Lagrangian submanifolds, that
is ∫

Fcl/G
e
i
~Scl :=

∫
L
e
i
~S
√
µL (23)

for L ⊂ FBV a Lagrangian submanifold. Choosing such a Lagrangian submanifold therefore corre-
sponds to a choice of gauge-fixing.

In order to define expectation values 〈O〉 in the BV formalism, we make use of the graded Stokes
Theorem 3.8. Recall that the expectation value of O ∈ Fun(Fcl) is defined by the expression (4), so
that in the BV formalism

〈O〉 :=

∫
L
e
i
~SO√µL∫
L
e
i
~S
√
µL

(24)

for some choice of Lagrangian L ⊂ FBV. Taking expectation values in the BV formalism is then done
as follows. Take a function O ∈ Fun(FBV), then

• if ∆O = 0 we have that 〈O〉 is independent of continuous deformations of the Lagrangian
submanifold L; and

13



• if O is ∆-exact then 〈O〉 = 0.

Both of these points follow directly from Theorem 3.8 and the fact that S satisfies the quantummaster
equation (18). Essentially what is being said here is that the ∆-cohomology of Fun(FBV) controls
the gauge-fixing of path integrals. In particular, if O is a ∆-closed function, then its gauge-fixed
expectation value is independent under (infinitesimal) deformations of the choice of gauge.

The upshot of all of this is that the BV formalism provides us with a nice way to control gauge-fixing
via homological algebra. Notice that the perturbative evaluation of the path integrals appearing in,
for example, (24) still requires some regularity condition on the classical master function S. Namely,
S must be non-degenerate for some choice of Lagrangian L ⊂ FBV. The perturbative expansion then
follows the standard procedure after restricting everything in sight to L.

3.3 A Remark: the Classical Master Equation

The most subtle aspect of using the BV formalism is constructing the quantum master function. The
rest of the structure that we need—namely that of a BV manifold—is provided almost entirely by the
construction outlined above.

A standard approach to constructing the quantum master function S is to build S order-by-order in
~ via the power series expansion (16). Supposing that S = S0 + S1~ + · · · is a quantum master
function, then writing the corresponding terms of the quantum master equation order-by-order in ~
gives

{S0, S0} = 0

{S0, S1} = −i∆S0

{S0, S2} = −1
2{S1, S1} − i∆S1

and so on. The first step is to therefore extend the classical action Scl ∈ Fun(Fcl) ⊂ Fun(FBRST) to
a solution S0 of the classical master equation

{S0, S0} = 0 (25)

in such a way that S0|FBRST = Scl. Assuming that we have a solution to the classical master equation,
the derivation Q := {S0, •} on Fun(FBV) squares to zero and so we can consider its cohomology
groups H•Q(Fun(FBV)) (where the grading is by Z-degree). In order to construct a quantum master
function to order ~, we therefore require [−i∆S0] = 0 ∈ H1

Q(Fun(FBV)). To extend to order ~2,
we require that the Q-cohomology class of −1

2{S1, S1} − i∆S1 is trivial, and so on. In particular,
a solution to the classical master equation extends to a quantum master function in the case that
H1
Q(Fun(FBV)) = 0, so we can view this cohomology group as an obstruction group for quantisa-

tion.

3.4 A First Example

We now continue our old example (see Examples 2.1 and 2.3) in the setting of the BV formalism. We
have already carried out the BRST formalism to obtain

FBRST = F ⊕ g[1]⊕ g∗[−1]⊕ g∗

14



with coordinates (xi, cα, c̄α, λα), and

Q = −cαviα(x)
∂

∂xi
+

1

2
fαβγc

βcγ
∂

∂cα
+ λα

∂

∂c̄α
.

According to (19), the space of BV fields is

FBV = T ∗[−1]FBRST = T ∗[−1](F ⊕ g[1]⊕ g∗[−1]⊕ g∗).

This is a BV manifold with coordinates Φa := (xi, cα, c̄α, λα) on the base (the fields) and coordi-
nates Φ†a := (x†i , c

†
α, c̄†α, λ†α) on the fibres (the anti-fields). The odd symplectic form ω, compatible

measure µ and BV Laplacian ∆ are given by (20), (21) and (22) respectively.

One way to construct the quantum master function in this setting is via the expression

S = Scl −Q(Φα)Φ†α,

where Q is the BRST operator of (11). This gives

S = Scl(x)− x†iv
i
α(x)cα +

1

2
fαβγc

†
αc
βcγ − c̄†αλα.

The fact that the above S is a quantum master function can be deduced from QScl = 0, Q2 = 0 and
the assumption divµQ = 0 (which me make for simplicity).

If we now choose the gauge-fixing function

Ψ = c̄αF
α(x)

as in Example 2.3, we have the associated Lagrangian submanifold

LΨ =

{
(Φa,Φ†a) ∈ FBV

∣∣∣∣ Φ†a = − ∂

∂Φa
Ψ

}
=

{
(xi, cα, c̄α, λα, x

†
i , c
†
α, c̄
†α, λ†α)

∣∣∣∣ x†i =
∂Fα

∂xi
(x)c̄α, c

†
α = 0, c̄†α = −Fα(x), and λ†α = 0

}
.

In this case, the integral∫
LΨ

e
i
~S
√
µLΨ

=

∫
FFP

exp

(
i

~

[
Scl(x) + λαF

α(x) + c̄α
∂Fα

∂xi
viβ(x)cβ

])∏
i,α

DxiDcαDc̄αDλα

coincides with our results from the Faddeev–Popov and BRST procedures.

3.5 A Modern Perspective

A more modern perspective on the BV formalism follows the ideas of Costello and Gwilliam. This
viewpoint interprets the BV formalism as a two-step procedure,

1. the classical BV formalism being the application of derived geometry to compute the derived
critical locus of a classical action; and

2. the quantum BV formalism being a way of computing expectation values of functions on this
derived critical locus via homological algebra.

Since we do not have the tools to properly treat the first part of this process, we will focus primarily
on the second part.
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3.5.1 A Sketch of the Derived Critical Locus

Suppose we have a classical field theory specified by the space of fields Fcl and action functional S.
For simplicity, we take FcL = M to be a smooth finite-dimensional manifold. As we have already
remarked, the classical physics of this system is controlled by the critical locus

Crit(S) := {x ∈M | dS(x) = 0} = graph(dS)×T ∗M M,

where the latter equality reflects the fact that Crit(S) is given by the intersection of the graph of dS
and the zero section inside T ∗M . In terms of sheaves of functions,

O(Crit(S)) = O(graph(dS))⊗O(T ∗M) O(M).

One way of understanding the derived critical locus, which we will not explain in sufficient detail,
is to replace the tensor product above with the “homologically correct” tensor product. The idea is
that while the above expression captures the data of the naive intersection graph(dS)×T ∗M M , the
derived tensor product in

O(dCrit(S)) = O(graph(dS))⊗L
O(T ∗M) O(M)

also captures more refined information.

In order to calculate the derived tensor product, we must first pick a resolution of O(graph(dS))
overO(T ∗M). Avoiding technical questions related to this (i.e. what model category structure are we
using?), we note that a particular choice of resolution gives

O(dCrit(S)) = ΛdimMTM −→ · · · −→ Λ2TM −→ TM −→ O(M)

with differential −ıdS , which acts on vectors by X 7→ −dS(X) = −X(S). We notice that this com-
plex can be identified with Fun(T ∗[−1]M), the polyvector fields onM . In particular, we have already
recovered part of our previous approach to the BV formalism, namely the odd symplectic manifold
T ∗[−1]M . This is the classical part of the BV formalism. The quantum part, which we shall describe
presently, is intended to provide a homological approach to integral on the derived critical locus.

Remark 3.9. The choice of resolution of O(graph(dS)) that we made above recovers T ∗[−1]M on
the nose. When working in derived geometry, such choices of resolution are not fixed on the nose
but only up to homotopy (for some appropriate notion of homotopy).

3.5.2 The de Rham Complex and Integration

The first cue for our approach to the quantum BV formalism is a reinterpretation of integration on
manifolds. Consider for the moment a closed n-manifoldM . Top forms onM are smooth measures,
and integration defines a map ∫

M
: Ωn(M) −→ R

that descends to a map ∫
M

: Hn
dR(M) −→ R

by Stokes’ Theorem.

16



We now describe a manoeuvre that lies at the heart of this approach to the BV formalism. Suppose
we fix a top form ω ∈ Ωn(M) with non-vanishing class [ω] ∈ Hn

dR(M). A simple yet compelling
consequence of this choice is that the expectation value of a function f ∈ Fun(M) with respect to
the probability measure induced by ω is given by

〈f〉ω :=

∫
M
fω∫

M
ω

=
[fω]

[ω]
. (26)

That is, the expectation value of 〈f〉ω may be interpreted as a comparison of classes in cohomol-
ogy, rather than as an integral proper. This simple idea3 really lies at the heart of recent efforts to
understand path integrals in quantum field theory.

Another important feature of this toy setting is that a choice of nowhere-vanishing ω gives us a
map

ΛkTM
mω−−→ Ωn−k(M)

X 7−→ ıXω

via contraction. The non-vanishing assumption allows us to define the coboundary operator

∆ω := m−1
ω ◦ d ◦mω, (27)

where d is the de Rham differential. We call ∆ω the BV Laplacian and we call (V•(M),∆ω) the
quantum BV complex for ω. We can now rephrase (26) as

Lemma 3.10. For a function f onM , the cohomology class [f ]BV ∈ H0
∆ω

(V•(M)) satisfies

[f ]BV = 〈f〉ω[1]BV.

To connect this to our previous discussion, we recall that V•(M) = Fun(T ∗[−1]M) is given by
functions on the shifted cotangent bundle ofM . Moreover, focussing on the concrete case ofM = Rn
we write our chosen ω as

ω = e−
1
~S(x)dx1 ∧ · · · ∧ dxn

(ignoring issues with overall signs for the sake of clarity). Then, denoting ξi := ∂
∂xi

, an explicit
computation shows that

∆ω =
∑
i

∂

∂xi
∂

∂ξi
+

1

~
{S, •} = ∆ +

1

~
{S, •} = ∆− 1

~
ıdS ,

with {•, •} the Schouten–Nijenhuis bracket and ∆ =
∑

i
∂
∂xi

∂
∂ξi

the canonical BV Laplacian (which
we view as being associated to the coordinate Berezin measure on the BV manifold T ∗[−1]Rn). Note
that we can also write

∆ω = e−
1
~S(x)∆e

1
~S(x).

We now have two different complexes

(Fun(T ∗[−1]M),−ıdS)︸ ︷︷ ︸
classical BV

and (Fun(T ∗[−1]M), ~∆− ıdS)︸ ︷︷ ︸
quantum BV

(28)

3this perspective is attributed by Gwilliam to Witten.
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and the ~→ 0 limit describes the passage from the quantum to the classical theory. Conversely, we
want to think of the passage from the classical to the quantum theory as a homological perturbation.
Here wemean “homological perturbation” in the sense of the homological perturbation lemma, which
tells us how to compute the cohomology of a complex (V, d + δ) whose differential is a “small”
perturbation from that of the complex (V, d) whose cohomology is already known. While we will
not make this any more precise here, the following example can be seen as evidence for the viewpoint
that Feynman diagrams come from homological perturbation.

3.5.3 A Second Example: Recovering the Wick Theorem in Rn

We will now consider an example that shows that we can recover the Wick Theorem (2) from the BV
formalism in the guise of Lemma 3.10. Consider M = Rn equipped with the Gaussian probability
measure

µGauss :=
(2π~)

n
2

√
detA

e−
1
2~ (x,Ax)dx1 · · · dxn,

where A = (aij) is a symmetric positive-definite (n × n)-matrix and ~ > 0. As always, we are
interested in computing the expectation values

〈f〉Gauss :=

∫
Rn
fµGauss∫

Rn
µGauss

=

∫
Rn
fµGauss.

The first step is to rephrase this problem in terms of homological algebra. We consider the Schwartz–
de Rham complex Ω•S(Rn) ofRn (that is, differential forms whose coefficients are Schwartz functions).
As with compactly-supported cohomology, the cohomology of (Ω•S(Rn), d) is concentrated in degree
n.

Next, for a Schwartz function f ∈ S we define 〈f〉Gauss via the expression

[fµGauss] = 〈f〉Gauss[µGauss] ∈ Hn
S (Rn).

As above, µGauss defines an isomorphism between Schwartz differential forms and Schwartz polyvec-
tor fields, so we can define the BV Laplacian as per (27). In this example, we have

∆Gauss = ∆− 1

~
∑
i,j

aijx
i ∂

∂ξi
,

where once again ∆ =
∑

i
∂
∂xi

∂
∂ξi

. An analogue of Lemma 3.10 holds in this setting, so we know that
we can compute 〈f〉Gauss by comparing the class [f ]BV to [1]BV in the BV complex.

Let us now consider the very simple case when n = 1, in which case the only non-trivial part of the
BV complex is

XS(R)
∆Gauss−−−−−→ S(R),

where
∆Gauss =

∂

∂x

∂

∂ξ
− ax

~
∂

∂ξ
.
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Taking an arbitrary element
F (x, ξ) = f(x) ξ ∈ XS(R),

the condition ∆GaussF = f ′(x)− ax
~ f(x) = 0 implies f ′(x) = ax

~ f(x), which can only be satisfied if
f(x) ∝ eax2/2~. In this case, however, F /∈ XS(R) and so H−1(Fun(T ∗[−1]R),∆Gauss) = 0.

We can replace the space S of Schwartz functions above with the space T of smooth functions
dominated by eax2/2~ and repeat the example. In this case, we get exactly the same results, except
now xk ∈ T for all k so we can compute the Gaussian moments 〈xk〉Gauss via the BV complex. Noting
that

∆Gauss(x
k−1ξ) = (k − 1)xk−2 − a

~
xk,

we obtain

[xk]BV =

{
0 if k is odd(~
a

)s
(2s− 1)!![1]BV if k = 2s is even.

This gives a formula for the expectation values 〈xk〉Gauss that coincides with the Wick Theorem for
R.

Returning to the case of the Gaussian measure µGauss onRn, by orthogonally diagonalising the matrix
A and using what we have just done we recover the Wick Theorem for Rn. Once we have the Wick
Theorem, the regular story of Feynman diagrams follows as per usual. We have therefore recovered
the usual story of Feynman diagrams from scratch from the BV formalism.

Concluding Remarks
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