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Motivation 2/33

Find an effective description for M2-branes.

Lightning review of branes:

D-branes appear in string theory as objects that open strings
can end on. They correspond to BPS solutions in supergravity.
IIA: D0, D2, D4, D6, D8, IIB: D(-1), D1, D3, D5, D7, D9
Dp-brane: spatially p-dimensional object.
Turn off gravity: we obtain a supersymmetric gauge theory.
D-branes stacked together increases rank of gauge group.
They can intersect and sometimes end on each other.
Two different perspectives of the same configuration: duality.
IIA string theory/IIA SUGRA: limit of M theory/11d SUGRA.
In 11d, BPS solutions are M2- and M5-branes.

Question: What is the effective description for M2-branes?
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Outline 3/33

BPS configurations: The Basu-Harvey equation
A new gauge structure: 3-Lie algebras
N = 8 supersymmetry: The BLG Model
Arbitrarily many M2-branes: The ABJM Model
Test: Superconformality
Noncommutativity from M2-brane models
Relations to M5-brane models
Outlook
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D1-D3-Branes and the Nahm Equation 4/33

D1-branes ending on D3-branes can be described by the Nahm equation.

dim 0 1 2 3 . . . 6
D1 × ×

D3 × × × ×

k D1-branes ending on D3-branes:

A Monopole appears.

X
i ∈ u(k): transverse fluctuations

Nahm equation: (s = x
6)

d

ds
X

i + ε
ijk[Xj

, X
k] = 0

Note SO(3)-invariance.

Solution: X
i = r(s)Gi with

r(s) =
1

s
, G

i = ε
ijk[Gj

, G
k]

Nahm, Diaconescu, Tsimpis
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D1-D3-Branes and the Nahm Equation 5/33

The D1-branes end on the D3-branes by forming a fuzzy funnel.

dim 0 1 2 3 . . . 6
D1 × ×

D3 × × × ×
Solution: X

i = r(s)Gi

r(s) =
1

s
, G

i = ε
ijk[Gj

, G
k]

The D1-branes form a fuzzy funnel:

G
i form irrep of su(2):

coordinates on fuzzy sphere S
2
F

D1-worldvolume polarizes: 2d → 4d
Myers
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Lifting D1-D3-Branes to M2-M5-Branes 6/33

The lift to M-theory is performed by a T-duality and an M-theory lift

IIB 0 1 2 3 4 5 6
D1 × ×

D3 × × × ×

T-dualize along x
5:

IIA 0 1 2 3 4 5 6
D2 × × ×

D4 × × × × ×

Interpret x4 as M-theory direction:

M 0 1 2 3 4 5 6
M2 × × ×

M5 × × × × × ×
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The Basu-Harvey Lift of the Nahm Equation 7/33

M2-branes ending on M5-branes yield a Nahm equation with a cubic term.

M 0 1 2 3 4 5 6
M2 × × ×

M5 × × × × × ×

Basu, Harvey, hep-th/0412310

A Self-Dual String appears.

Substitute SO(3)-inv. Nahm eqn.

d

ds
X

i + ε
ijk[Xj

, X
k] = 0

by the SO(4)-invariant equation

d

ds
X

µ + ε
µνρσ[Xν

, X
ρ
, X

σ] = 0

Solution: X
µ = r(s)Gµ with

r(s) =
1
√
s
, G

µ = ε
µνρσ[Gν

, G
ρ
, G

σ]
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The Basu-Harvey Lift of the Nahm Equation 8/33

M2-branes ending on M5-branes yield a Nahm equation with a cubic term.

M 0 1 2 3 4 5 6
M2 × × ×

M5 × × × × × ×

Solution: X
µ = r(s)Gµ

r(s) =
1
√
s
, G

µ = ε
µνρσ[Gν

, G
ρ
, G

σ]

The M2-branes form a fuzzy funnel:

G
µ form a rep of so(4):

coordinates on fuzzy sphere S
3
F

M2-worldvolume polarizes: 3d → 6d

What is this triple bracket?
What is a quantized S

3?
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What is the algebra behind the triple bracket? 9/33

In analogy with Lie algebras, we can introduce 3-Lie algebras.

BH:
d

ds
X

µ + [As, X
µ] + ε

µνρσ[Xν
, X

ρ
, X

σ] = 0 , X
µ
∈ A

3-Lie algebra
Obviously: A is a vector space, [·, ·, ·] trilinear+antisymmetric.
Demand a “3-Jacobi identity,” the fundamental identity:

[A,B, [C,D,E]] =[[A,B,C], D,E] + [C, [A,B,D], E]

+ [C,D, [A,B,E]]

Filippov (1985)

Gauge transformations from Lie algebra of inner derivations:

D : A ∧A → Der(A) =: gA D(A,B) � C := [A,B,C]

Commutator of inner dervs. closes due to fundamental identity.
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What is the algebra behind the triple bracket?
In analogy with Lie algebras, we can introduce 3-Lie algebras.

To write down an action, i.e. gauge invariant terms,
we need an invariant pairing on A:

(·, ·) : A⊗A →

Invariance under gauge transformations:

([A,B,C], D) + (C, [A,B,D]) = 0

On Der(A), there are now two pairings ((·, ·)):
1. The usual Killing form
2. A pairing induced from the pairing on A:

((D(A,B), D(C,D))) = (D, [A,B,C])

Key to constructing a maximally SUSY model later: use the latter.
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Examples of 3-Lie algebras 11/33

In analogy with Lie algebras, we can introduce 3-Lie algebras.

Examples:

Lie algebra 3-Lie algebra

Heisenberg-algebra: Nambu-Heisenberg 3-Lie Algebra:
[τa, τb] = εab , [ , ·] = 0 [τi, τj , τk] = εijk , [ , ·, ·] = 0

su(2) � 3: A4 �
4:

[τi, τj ] = εijkτk [τµ, τν , τκ] = εµνκλτλ

Focus on A4

The associated Lie algebra is gA4 = so(4) ∼= su(2)× su(2).
Its bilinear pairing ((·, ·)) has split signature:

((D(τa, τb), D(τc, τd))) = εabcd
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Approaching the Effective Description of M2-Branes
Spacetime symmetries and BPS equations give helpful constraints on the description.

A stack of flat M2-branes in 1,10 should be effectively described
by a conformal field theory with the following constraints:

Spacetime symmetries: SO(1, 10) → SO(1, 2)× SO(8)
extended by N = 8 SUSY.

Field content: X
I , I = 1, ..., 8, and superpartners Ψα

Assumption
Take BPS/SUSY transformations from Basu-Harvey equation and
therefore the matter fields take values in a metric 3-Lie algebra.

δX = iε̄ΓIΨ δΨ = ∂µX
IΓIΓ

µ
ε−

1
6ΓIJK [XI

, X
J
, X

K ]ε

Recipe: Try to close SUSY algebra. Constraints yield equations of
motion for matter fields.
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The Bagger-Lambert-Gustavsson Model
This model is an unconventional supersymmetric Chern-Simons matter theory.

BLG found that for SUSY, we need to introduce gauge symmetry.
⇒ Field content: X

I ∈ A, Ψ ∈ A and gauge potential Aµ ∈ gA.

The Bagger-Lambert-Gustavsson model

LBLG = + k
4πε

µνκ
�
((Aµ, ∂νAκ)) +

1
3((Aµ, [Aν , Aκ]))

�

−
1
2(∇µX

I
,∇

µ
X

I)Cl +
i
2(Ψ̄,Γµ

∇µΨ)

+ i
4(Ψ̄,ΓIJ [X

I
, X

J
,Ψ])− 1

12([X
I
, X

J
, X

K ], [XI
, X

J
, X

K ])

This model is invariant under the supersymmetry transformations:

δX = iε̄ΓIΨ , δΨ = ∇µX
IΓIΓ

µ
ε−

1
6ΓIJK [XI

, X
J
, X

K ]ε ,

δAµ = iε̄ΓµΓI(D(XI
,Ψ))
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Consistency checks
The BLG model passes a number of consistency checks.

LBLG = + k
4πε

µνκ
�
((Aµ, ∂νAκ)) +

1
3((Aµ, [Aν , Aκ]))

�

−
1
2(∇µX

I
,∇

µ
X

I)Cl +
i
2(Ψ̄,Γµ

∇µΨ)

+ i
4(Ψ̄,ΓIJ [X

I
, X

J
,Ψ])− 1

12([X
I
, X

J
, X

K ], [XI
, X

J
, X

K ])

Further results:
The model is classically conformal and seems rather unique.
If N = 8 SUSY not anomalous ⇒ vanishing β-function
The model is parity invariant.
Under some assumptions: reduction mechanism M2→D2.

(Mukhi, Papageorgakis,0803.3218)

k = 2: moduli space matches 2 M2-branes at tip of 8
/ 2.

Problem: The only 3-Lie algebra with pos. def. metric is A4
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Real and Hermitian 3-Algebras 15/33

There are two natural generalizations of 3-Lie algebras.

Way out: sacrifice (manifest) SUSY

Real 3-Algebras (N = 2)
Almost the same as 3-Lie algebras: triple bracket only
antisymmetric in first two slots. S. Cherkis, CS, 0807.0808

Hermitian 3-Algebras (N = 6)
Start from a complex vector space A. Bracket [ · , · ; · ] satisfies

[A,B;C] = −[B,A;C], [αA,B;C] := α[A,B;C], [A,B;αC] := α∗[A,B;C]

[[C,D;E], A;B]− [[C,A;B], D;E]− [C, [D,A;B];E] + [C,D; [E,B;A]] = 0

Bagger, Lambert, 0807.0163

Representation: [A,B;C] := AC
†
B −BC

†
A

Aharony, Bergman, Jafferis, Maldacena, 0806.1218

All M2-brane constructions usually generalize to these two types.
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ABJM model 16/33

The ABJM model satisfies a number of convincing consistency checks.

ABJM action
Re-arrange 8 real into 4 complex scalars: SO(8) → SU(4).
Action:

S =

�
d3x tr

�
−∇µφ̄A∇

µ
φ
A
− iψ̄A

γ
µ
∇µψA

k

4π
ε
µνλ

�
A

R
µ ∂νA

R
λ + 2

3A
R
µA

R
ν A

R
λ −A

L
µ∂νA

L
λ −

2
3A

L
µA

L
νA

L
λ

�

+
4π2

3k2

�
φ
A
φ̄Aφ

B
φ̄Bφ

C
φ̄C + φ̄Aφ

A
φ̄Bφ

B
φ̄Cφ

C

+ 4φA
φ̄Bφ

C
φ̄Aφ

B
φ̄C − 6φA

φ̄Bφ
B
φ̄Aφ

C
φ̄C

�
+ Vferm

�
.

Model can be engineered in string theory.
This model reproduces N

3/2-scaling.
Drukker, Marino, Putrov, 1007.3837.

Has an integrable spin chain. Minahan, Zarmbo, 0806.3951.
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Recovering SYM Features: Marginal Deformations
The BLG model shares features with N = 4 SYM. What about marginal deformations?

Observation: BLG/ABJM seems similar to N = 4 SYM
(→ integrable spin chains).

N = 4 SYM admits (exactly) marginal deformations:

W = εijk tr ([Φ
i
,Φj ]βΦ

k)

[Φi
,Φj ]β := eiβΦiΦj

− e−iβΦjΦi

R. G. Leigh and M.J. Strassler, Nucl. Phys. B 447 (1995).

Conformality for β-deformed SYM to all orders in perturbation
theory: S. Ananth, S. Kovacs, H. Shimada, JHEP 01 (2007) 046.

Such deformations correspond to deformations of AdS5 × S
5.

Similar deformations for AdS4 × S
7 in the literature.

What about BLG/ABJM and their deformations on quantum level?
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Manifestly N = 2 SUSY Formulation
There is a manifestly N = 2 SUSY formulation, allowing for various deformations.

Approach: Take N = 1, 4d superspace 1,3|4 and reduce to 3d.

Field content of the theory:

• The matter fields X
I , Ψ are encoded in four chiral multiplets:

Φi(y) = φ
i(y) +

√
2θψi(y) + θ

2
F

i(y) ,

• The gauge potential Aµ is contained in a vector superfield:

V (x) = − θ
α
θ̄
α̇(σµ

αα̇Aµ(x) + iεαα̇σ(x))

+ iθ2(θ̄λ̄(x))− iθ̄2(θλ(x)) + 1
2θ

2
θ̄
2
D(x) ,

N = 2 superspace formulation of BLG (Cherkis, CS, 0807.0808)

L =

�
d4θ κ

�
i((V, (D̄αD

α
V ))) + 2

3((V, {(D̄
α
V ), (DαV )}))

�

+ (Φ̄i, e
2iV

· Φi) + α

��
d2θ εijkl([Φ

i
,Φj

,Φk],Φl) + c.c.

�
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Contributing diagrams
At 2 loop level, only three classes of diagrams contribute.

Contributing diagrams (only 2-pt contributions are divergent):

Potential flow of the couplings due to anomalous dimensions.
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Results: The β-function for multitrace deformations
The BLG model is conformally invariant at two loops.

Example of a deformation:

W =
�
R

(1)
ijkl(Φ

l
, [Φi

,Φj
,Φk]) +R

(2)
ijkl(Φ

i
,Φj)(Φk

,Φl)
�

Total anomalous dimension:

γ
j

i =
1

8π2κ2

��
k2 + k

2
1 +

1
12(2k2 +Nfk3)

�
δ

j
i

+ 8κ2
�
R

(1)
iklm

�
− c3R

jklm
(1) + 2c2R

jmlk
(1) + 2c1R

jmlk
(2)

�

+ R
(2)
iklm

�
dR

jklm
(2) + 2Rjmlk

(2) + 2c1R
jmlk
(1)

���

Quick test: BLG. R(2)
ijkl = 0, A = A4, therefore R

(1)
ijkl = λεijkl and

d = 4 k1 = 0 k2 = −3 k3 = 6 c1 = 0 c2 = c3 = −6

The β-function reads as (the phase does not flow)

β
(1)
ijkl = −

3
4π2κ2

�
1− (4!κ)2|λ|2

�
R

(1)
ijkl so |λ| =

1

4!κ
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Discussion of results
The running of the coupling is exactly as expected.

For simplicity, we take A = A4 and the superpotential

R
(1)
ijkl =

λ1

κ
εijkl and R

(2)
ijkl =

λ2

κ
δijδkl , λi = rie

ϕi

The β-function at two loops reads as (phases do not flow)

β
(�)
ijkl =

f(r1, r2)

κ2
R

(�)
ijkl f(r1, r2) := −

3

4π2

�
1− 96

�
6r21 + r

2
2

��

BLG: r1 = 1
24 , r2 = 0

points on ellipse:
IR fixed points

Recover β-deformations
Akerblom&CS&Wolf 0906.1705
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We have a paper factory:
Take your favourite phenomenon in N = 4 Super Yang-Mills

and translate it to the ABJM/BLG models.
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Noncommutativity in M-theory
Certain background fields should yield noncommutativity in M-theory.

Motivation:
Fuzzy S

3-funnel appearing in M2-M5-configurations.
M5-brane perspective: Turning on 3-form background,

C = θdx0 ∧ dx1 ∧ dx2 + θ
�dx0 ∧ dx1 ∧ dx2 ,

one gets interesting noncommutative deformations:
Noncommutative loop space

Kawamoto, Sasakura and Bergshoeff et al. (2000)
[x0

, x
1
, x

2] = θ and [x3
, x

4
, x

5] = θ
� Chu, Smith (2009)

Non-associative structures from strings in H-field backgrounds
Blumenhagen, Deser, Lüst, Plauschinn, Rennecke (2010/11)

Baez et al.: Phase space of bosonic string is 2-plectic
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2-plectic Manifolds
Certain 2-plectic manifolds naturally come with a prequantum gerbe.

Symplectic manifold (M,ω) with ω ∈ H
2(M, ):

⇒ Prequantum line bundle with connection ∇, F∇ = 2πiω.

2-plectic manifold (M,�) with � ∈ H
3(M, ):

⇒ Prequant. abelian gerbe with connect. struct. incl. H = 2πi�.

First idea: Categorify Hawkins’ approach (2-groupoids, etc.)
(work in progress, cf. Freed, Baez, Rogers ...)

Second idea: Transgression gives again symplectic manifolds.
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The Symplectic Loop Space of a 2-plectic Manifold.
A 2-plectic manifold has a symplectic structure on its loop space.

Consider the following double fibration:

M LM

LM × S
1

ev pr�
�✠

❅
❅❘

Transgression

T : Hk+1(M) → H
k(LM) , T = pr! ◦ ev∗

(T ω)x(v1(τ), . . . , vk(τ)) :=

�

S1
dτ ω(v1(τ), . . . , vk(τ), ẋ(τ))

Transgression is a chain map.
Maps 2-plectic structures to symplectic structures.
Maps abelian gerbes to line bundles.
Previously successfully applied: Lift ADHMN construction to
M-theory. CS, Papageorgakis&CS, Palmer&CS
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Towards a Quantization of 3

The manifold L 3 comes with a natural symplectic structure.

Explicitly, this works as follows:

We start from 3 with 2-plectic form � = εijkdxi ∧ dxj ∧ dxk.

Transgression yields a symplectic form on loop space L 3:

ω =

�
dτ

�
dσ εijkẋ

k(τ)δ(τ − σ) δxi(τ) ∧ δx
j(σ)

Kernel of ω:

ιX(T �) = 0 for X =

�
dρ ẋ

i(ρ)
δ

δxi(ρ)

This vector field generates reparameterizations of the loops in L 3.

We can therefore invert ω and obtain the Poisson bracket

{f, g} :=

�
dτ

�
dρ δ(τ−ρ) θijk

ẋk(ρ)

|ẋ(ρ)|2

�
δ

δxi(τ)
f

� �
δ

δxj(ρ)
g

�
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Noncommutative loop space 27/33

We recover a previously found result on noncommutative loop spaces.

This leads to the following noncommutativity on loop space:

[xi(τ), xj(σ)] = θ
ijk ẋk(τ)

|ẋ(τ)|2
δ(τ − σ) +O(θ2)

CS&Szabo, 1211.0395
Note:

This result agrees with that of Kawamoto, Sasakura and
Bergshoeff et al. (2000)
It is also compatible with one-form quantization of Baez et al.
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What are these 3-Lie algebras really? 28/33

3-Lie algebras can be regarded as special cases of gauge algebras of non-abelian gerbes.

The machinery of 3-Lie algebras seems slightly awkward.
Just switch to matrices as in ABJM?
Strong homotopy algebras might be a guess...

C. I. Lazaroiu, D. McNamee, CS and A. Zejak, 0901.3905
Nahm-Transform/Integrability (→ my talk on Friday):
M2-branes and M5-branes have similar gauge structures.

Best guess for M5-brane models:

use non-abelian gerbes/categorified principal bundles

Christian Sämann M2-brane Models



Categorifying Gauge Groups 29/33

A Lie 2-group is a Lie groupoid with extra structure.

Warning: Categorification neither unique nor straightforward.

Lie 2-group
A Lie 2-group is a

monoidal category, morph. invertible, obj. weakly invertible.
Lie groupoid + product ⊗ obeying weakly the group axioms.

Simplification: use strict Lie 2-groups 1:1
←→ Lie crossed modules

Lie crossed modules

Pair of Lie groups (G,H), written as (H
t

−→ G) with:
left automorphism action �: G× H → H

group homomorphism t : H → G such that
t(g � h) = gt(h)g−1 and t(h1) � h2 = h1h2h

−1
1

Also: strict Lie 2-algebras 1:1
←→ differential crossed modules
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Examples of Lie Crossed Modules 30/33

Lie crossed modules come in a large variety.

Lie crossed modules

Pair of Lie groups (G,H), written as (H
t

−→ G) with:
left automorphism action �: G× H → H

group homomorphism t : H → G

t(g � h) = gt(h)g−1 and t(h1) � h2 = h1h2h
−1
1

Simplest examples:

Lie group G, Lie crossed module: (1
t

−→ G).

Abelian Lie group G, Lie crossed module: BG = (G
t

−→ 1).
More involved:

Automorphism 2-group of Lie group G: (G
t

−→ Aut(G))
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Differential Crossed Modules from 3-Algebras 31/33

3-algebras are merely special classes of differential crossed modules.

Recall the definition of a 3-algebra A:
[·, ·, ·] : A⊗3 → A

Fundamental identity says that [a, b, ·] ∈ Der(A), a, b ∈ A.

Theorem

3-algebras 1:1
←→

metric Lie algebras g ∼= Der(A)
faithful orthog. representations V ∼= A

J Figueroa-O’Farrill et al., 0809.1086

Observations

V
t

−→ g is a simple differential crossed modules
M2- and M5-brane models have the same gauge structure.
Via Faulkner construction, all DCMs come with [·, ·, ·]

Application of this to M2- and M5-models looks promising.

S Palmer & CS, 1203.5757
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Status of M5-brane models 32/33

Progress is even being made in constructing M5-brane models.

Although the situation for M5-branes was assumed to be more
hopeless than that for M2-branes, progress is being made:

Lambert, Papageorgakis, 1007.2982: Non-abelian tensor field
equations based on 3-Lie algebras.
Chu, 1108.5131: Non-abelian tensor gauge fields, no
supersymmetry, non-local fields.
Samtleben, Sezgin, Wimmer, 1108.4060: from tensor
hierarchies N = (1, 0) supersymmetry, no reduction to super
Yang-Mills theory.
CS, Wolf, 1205.3108, ...: Manifestly N = (2, 0) superconf.
field equations from twistor space. (→ my talk on Friday)
... and many more!
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Conclusions 33/33

Summary:
� M2-brane models exist and are interesting.
� Models pass many consistency checks
� Models are very similar to N = 4 super Yang-Mills theory
� Quantum geometries from loop spaces.
� Arising gauge structures suggests to use categorification.
� Construction of M5-brane models on its way.
� A better understanding of M-theory around the corner?
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