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Introduction

@ Study locally compact Hausdorff topological spaces
through their algebras of continuous functions. The
product on this algebra is pointwise multiplication, which
is commutative.

® Allow a suitable class of possibly noncommutative
algebras: C*-algebras, and view these as algebras of
functions of “noncommutative spaces’. This can be used
to study e.g. non-Hausdorff spaces.

©® Generalise techniques from (algebraic) topology to all
C*-algebras. This works very well for K-theory.

Goal: Introduce C*-algebras and their K-theory, and give
examples relevant to topology and representation theory.
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e Wegge—Olsen: K-theory and C*-algebras (introductory);

e Blackadar: K-theory for operator algebras (comprehensive
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Continuous functions

From now on, let X be a locally compact Hausdorff space.

Definition

A continuous function f : X — C vanishes at infinity if for all
€ > 0, there is a compact subset C C X, such that for all

x € X\ C, one has |f(x)| <e. (If X is compact, all functions
vanish at infinity.)

Let Co(X) be the vector space of all such functions on X.
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Structure on Cy(X)
For f,g € Go(X) and x € X, set

[flloo == sup |F(y)l;
X

ye
() 1= 709
(f8)(x) = f(x)g(x).
Then Co(X) is a Banach space in the norm || - ||, and a

commutative algebra over C with respect to the pointwise
product (1).
Furthermore, we have for all f, g € Co(X),

17gllco < [[flloollglloo:
1 Flloe = [If12-

General C*-algebras have the same structure and properties,
apart from commutativity.
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C*-algebras

A C*-algebra is a Banach space (A, || - ||), equipped with an
associative bilinear product (a, b) — ab and an antilinear map
a — a* whose square is the identity, such that for all a,b € A,
we have

(ab)* = b*a*;
labl[ < [|all [[]];
la*all = la|l*.

A homomorphism of C*-algebras is a linear homomorphism of
algebras that intertwines star operations. Such homomorphisms
are automatically bounded.

It follows from the C*-algebra axioms that ||a*|| = ||a]| for all a
in a C*-algebra.
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Commutative C*-algebras

Theorem (Gelfand—Naimark)

Every commutative C*-algebra is isomorphic to the C*-algebra
of continuous functions that vanish at infinity on a locally
compact Hausdorff space. If two commutative C*-algebras

Co(X) and Cy(Y') are isomorphic, then X and Y are
homeomorphic.

The inverse construction to X — A = Cy(X) is

Commutative C*-algebra A —

Space X of nonzero homomorphisms (characters) A — C.
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Functoriality

A proper continuous map f between two locally compact
Hausdorff spaces X and Y induces a homomorphism of
C*-algebras

*: CO(Y) — CQ(X),

defined by pulling back functions along f. In this way, (p is a
contravariant functor from the category of locally compact
Hausdorff spaces, with proper continuous maps, to the
category of commutative C*-algebras.

Together with the fact that all homomorphisms between two
commutative C*-algebras Co(X) and Co(Y') are defined by
pulling back along some proper continuous map, the
Gelfand—Naimark theorem implies that this functor defines an
equivalence of categories.
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Dictionary
Topological spaces C*-algebras
compact unital

locally compact & Hausdorff
connected component
Cartesian product

commutative
direct summand
tensor product
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Let H be a Hilbert space, and let B(H) be the algebra of
bounded operators on H. For a € B(H), let | a|| be the
operator norm of a, and let a* be its adjoint, defined by

(x;ay) = (a"x,y)

for all x,y € H. Then B(H), equipped with these structures, is
a C*-algebra.

In fact, all C*-algebras can be realised as subalgebras of an
algebra of bounded operators on a Hilbert space.
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Theorem (Gelfand—Naimark)

Every C*-algebra is isomorphic to a norm-closed subalgebra of
B(H) that in addition is closed under the *-operation, for some
Hilbert space H.

Example

For a suitable Borel measure on a locally compact Hausdorff
space X (the counting measure always works), the
representation of Co(X) in L2(X) as multiplication operators
yields an embedding of Go(X) into B(L?(X)).

Example
The algebra K(H) of compact operators on a Hilbert space
H is an ideal in B(H).
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Tensor products

Let A and B be two C*-algebras. The algebraic tensor product
of A and B can be completed in various norms to give a
C*-algebra A® B.

For some C*-algebras A, such as commutative ones, all such
completions are equal (for any B). These C*-algebras are
called nuclear.

Co(X) X Co(Y) = Co(X X Y)
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Convolution algebras

Let G be a locally compact Hausdorff topological group,
equipped with a left Haar measure dg. For two functions
0,1 € Cc(G), their convolution product ¢ x 1) is defined by

(o 0)(e) = [ o(g)ile e)de )
G
The function ¢* is defined by

¢*(g) = (g )Ag) Y, (3)

where A is the modular function on G with respect to dg,
defined by d(gh) = A(h)dg for all h € G. For unimodular
groups, A is the constant function 1.
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The maximal group C*-algebra

For a unitary representation (H, ) of G, and ¢ € C.(G), we
have the operator

w(p) = /G ole)r(g)dg < B(H).

Definition
The full/maximal C*-algebra C*(G) of G is the completion
of the convolution algebra C.(G) in the norm

lell := sup [m()llBry < llellr(e)-

7Tr)

The supremum runs over all unitary representations (H, ) of

G.
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The reduced group C*-algebra

Definition
The reduced C*-algebra C;(G) of G is the completion of
Cc(G) in the norm || - ||, given by

lellr == IA° (@)l 5u2(6))-

Here A® : G — U(L?(G)) is the left regular representation
(A%(g)¢)(&") = plg'&)).

Note that A ()Y = @ % for all ¢ € C.(G) and ¥ € L%(G).

The group G is called amenable if C(G) = C*(G). l.e. all
irreducible unitary representations occur in (L%(G), \®).
Examples: G abelian or compact.
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The unitary dual

Consider the unitary dual G and the tempered unitary dual
Gtemp Of G:

o G:= {unitary irreducible representations of G};
o Giemp = {(H,7) € G;H — L*(G)}.
There is a natural topology on G, which is not Hausdorff in

general.
Idea:

o C*(G) = “{noncommutative functions on G}";

o C*(G) = “{noncommutative functions on Giemp}”-
This is true for abelian groups G:

o Giemp = G, and

e C*(6) = C(6) = Go( &),

via the Fourier transform.
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The C*-algebra of a compact
group

Let K be a compact Lie group, and consider the direct sum

@ B(V):=

(V,m)ek
{(aw)(v’ﬂ_)ek; aﬂ— S B( V)77TII4>moo Haﬂ'HB(V) = 0}

l.e. Cy-sections of the bundle

A

(B( V))(V,n)ek — K.

Equipped with the norm

[(ar) ekl == sup llaxlls(v),
(V,m)ek

this becomes a C*-algebra.
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Proposition

There is an isomorphism of C*-algebras

G(K)y=C(K) = p BWV).

(V,m)ek

The right hand side is very similar to CO(R), up to replacing C
by matrix algebras B( V).



C*-algebras
and K-theory

Peter Hochs

Group
C*-algebras

Proof
Consider the Hilbert space [2(K) :=

{a = (an)(ymyeki x € B(V).(2,2) == Y tr(akay) < oo}.

WER

Peter—Weyl theorem: the Plancherel transform
P L2(K) — L%(K),

(Pf)(\/ﬂr) = vdim Vﬂ'(f)

for f € [2(K) and 7 € K, is a unitary isomorphism.
The map ¢ : C*(K) — B(L%(K)),

p(f) = Pr(f)P~1,

for f € C(K), is isomorphism of C*-algebras onto its image,
which is @(V n)ek B(V).
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The natural C* algebras used in coarse geometry are Roe

algebras.
Group Let
o e e (X, d) be a metric space in which all closed balls are
compact;

e G be a locally compact group acting properly and
isometrically on X;

e dx be a G-invariant Borel measure on X for which every
nonempty open set has positive volume;

e H be any infinite-dimensional separable Hilbert space,
such as /2(N).

Definition

An operator T € B(L?(X,H; dx)) has finite propagation if
there is an R > 0, such that for all f1, f, € Co(X) with supports
at least a distance R apart, 1 THh = 0.
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Roe algebras

Definition
The reduced equivariant Roe algebra of X is the closure
Ci(X) in B(L2(X,H; dx)) of

{T e B(L?(X,H; dx));fT and Tf compact;

T has finite propagation;
T is G-equivariant}.

(Idea: G-invariant operators with smooth kernels supported
near the diagonal. E.g. finitely propagating parametrices of
G-equivariant elliptic operators on X.)

There is also a maximal equivariant Roe algebra, completed
in a norm similar to the maximal group C*algebra norm.
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Group Roe algebras generalise group C*-algebras, in the sense that
-algebras

C:(|Gl) = CH(G) @ K(H).

e |G| is the group G, considered as a metric space with
respect to a left invariant metric for which all closed balls
are compact.

e We will see that tensoring with IC(#) does not change the
K-theory of a C*-algebra.

e This holds for reduced and maximal Roe algebras and
group C*-algebras.
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Topological K-theory

We first consider a compact Hausdorff space X.

Definition

The (topological) K-theory of X is the abelian group K°(X)
whose generators are isomorphism classes [E] of (complex)
vector bundles E — X, subject to the relation

[E] + [F] = [E @ F]

for all vector bundles E and F over X.

Note that a general element of K°(X) is a formal difference
[E] — [F] of isomorphism classes of vector bundles.
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Functoriality

A continuous map f : X — Y between compact Hausdorff
spaces induces a map * : KO(Y) — K°(X), defined via the
pullback of vector bundles along f.

This turns K into a contravariant functor from the category
of compact Hausdorff spaces to the category of abelian groups.
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K-theory vs. cohomology

Theorem
For compact X, there is an isomorphism (Chern character)

X KA(X)©2Q = P H'(X;Q).

n even

Here H"(X; Q) is the nth (e.g. Cech) cohomology group of X
with rational coeficients.

(There is an analogous isomorphism for odd K-theory, which
will be defined later.)
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Noncompact spaces

Let XT = X U {oo} be the one-point compactification of a
locally compact Hausdorff space X. Let

i:{oo} = XT

be the inclusion map of the point at infinity. Consider the
functorially induced map

* KOXT) = KO({oo}).

Vector bundles over the one-point space {oo} are just
finite-dimensional vector spaces. Therefore K°({o0}) = Z, via
the dimension map.

Definition
The K-theory of the locally compact Hausdorff space X is the
kernel of the map i*. It is denoted by K°(X).
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Functoriality

A continuous map between locally compact Hausdorff spaces
f: X—=Y

induces a map
*: KQ(Y) — Ko(X)

if it extends continuously to a map between the one-point
compactifications of X and Y.

This means that f should be proper (f~1(C) is compact if
C C Y is compact). Hence topological K-theory is a
contravariant functor from the category of locally compact
Hausdorff spaces, with proper continuous maps, to the
category of abelian groups.
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Suppose that X is compact, so that Co(X) = C(X).

If E — X is a vector bundle, then the space I'(E) of its
continuous sections has the natural structure of a
C(X)-module, given by pointwise multiplication.

o [(E) =T(F) as C(X)-modules iff E = F.
e (E®F)ZT(E)®TI(F).
e For any vector bundle E — X, there is a vector bundle
F — X suchthat E F =2 X x C".
Then

K-theory

ME)eT(F)ZT(E@F)=T(XxC")= C(X)".
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Finitely generated projective
modules

More generally, a module 9t over a C*-algebra (or ring) A is
called finitely generated and projective if there exists an
A-module 9T such that 9T & N is a finitely generated free
A-module, i.e. of the form A” for some n € N.

Any finitely generated projective C(X)-module is isomorphic to
the module T'(E), for some vector bundle E — X.

Theorem (Serre—Swan)

The K-theory of the compact Hausdorff space X is the abelian
group whose generators are isomorphism classes [9] of finitely
generated projective C(X)-modules, subject to the relation

(] + [97] = [ e N

for all finitely generated projective modules 9t and )t over
C(X).
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K-theory of unital C*-algebras

Let A be a C*-algebra with a unit.

Definition

The K-theory of A is the abelian group whose generators are
isomorphism classes [91] of finitely generated projective
A-modaules, subject to the relation

(] + [97] = (M e N

for all finitely generated projective modules 9t and 9t over A.
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Functoriality

Let
f:A—= B

be a unital *-homomorphisms between unital C*-algebras, and
9 a finitely generated projective (right) A-module. Form the
f.g. projective B-module

MfB:=Mec B/(m-a)® b~ me (f(a)b).

forall me 9, ac Aand b € B.
This induces a map

fi Ko(A) — Ko(B)

This makes the K-theory of unital C*-algebras a covariant
functor. (Hence the subscript 0.)
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Pullbacks of vector bundles

Functoriality of C*-algebraic K-theory generalizes functoriality
of topological K-theory.

Lemma

Let X and Y be compact Hausdorff spaces, let f : X — Y be a
continuous map, and let E — Y be a vector bundle. Consider

the homomorphism of C*-algebras f* : C(Y) — C(X) defined

by pulling back functions along f. There is an isomorphism

[(X,f*E) 2 T(Y,E) ®¢ C(X).
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Compactification and unitisation

The extension of K-theory to non-unital C*-algebras is
analogous to the extension of topological K-theory to
noncompact spaces.

If X is a locally compact Hausdorff space, then

C()(X)Jr = Co(X) pC= C(XJr)

The multiplication, star operation and the norm on Co(X)™ are
defined by

(F+2z)(g+w):=fg+ zg + wf + zw;
(F+z) :=f"+2z

If + 2| := sup [F(<) + 2l = I + zllB(cox))

for f,g € Co(X) and z, w € C. The resulting C*-algebra
Co(X)T is called the unitisation of Co(X).



C*-algebras
and K-theory

Compactification and unitisation

Peter Hochs

The inclusion map i : {oo} < X induces the map

K-theory

i G(XT) 2 G(X)T = C (4)

given by the natural projection onto the term C. Then we have

Proposition
The topological K-theory of X is the kernel of the map

"+ Ko(C(XT)) = Ko(C) = Z

induced by (4).
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For a general C*-algebra, we proceed as follows.

Definition

K-theory Let A be a C*-algebra. Its unitisation AT is defined as the
algebra AT := A® C, with multiplication, star operation and
norm given by

(a+2z)(b+ w) :=ab+ zb+ wa+ zw;
(a+2)" =a"+2Z
la+zllas = lla+ zllpa),
for a,b € A and z,w € C. Here ||a+ z||p(a) is the norm of

a+ z as a bounded operator on the Banach space A, given by
left multiplication.
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For a C*-algebra A, consider the map

i*: At = C,

K-theory
atz—z

We denote the induced map on K-theory by

i Ko(A+) — Ko((C) = 7.

Definition

The K-theory of A is the kernel of the map i*. It is denoted
by Ko(A).

Hence for all locally compact Hausdorff spaces, we have
K(X) = Ko(Co(X)).
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K-theory via projections
The K-theory of a unital C*-algebra A is often defined in terms

of projections in the infinite matrix algebra

Mio(A) = lim My(A),

i.e. elements p such that p?> = p = p*. These correspond to
f.g. projective A-modules via p — p(A”), for p a projection in
M,(A).

The functoriality of K-theory is then induced by

f(p)yj = f(py) € B,

if f: A— B is a homomorphism of C*-algebras and
p € My (A) is a projection.
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Unital vs. nonunital algebras

In the projection picture another reason why K-theory for
non-unital C*-algebras has to be defined separately becomes
apparent.

Indeed, if X is a connected, locally compact but not compact
Hausdorff space, then there are no nonzero projections in
Moo (Co(X)), because the trace of such a projection is a
constant function on X.
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For any integer n, and any C*-algebra A, one has the K-theory

group
K-theory Kn(A) = KO (A ® CO(R”))

Bott periodicity is the statement that K,;2(A) = K,(A) for
all such n and A (naturally in A). Therefore, it is enough to
consider the K-theory groups Ko(A) and Ki(A).

(There is also a direct characterisation of Ki(A), in terms of
the group of connected components of the invertible matrices
over A.)
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A Ko(A) Ki(A)
C Z 0

Q) Z 0
K(H) z 0
B(H) 0 0
B(H)/K(H) 0 z
Co(R?) Z 0
CO(RZWH) 0 7
C(5°) 72 0
C(52n+1) 7 7
C(T") z¥ 7

e 7H separable, infinite-dimensional;
e Stability: Ki(A® K(H)) = Kj(A).
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Half-exactness

Theorem
If
0—-J—>A—-A/J—0

is an exact sequence of C*-algebras, then the sequences
Ki(J) = Ki(A) = K;(A/J)

induced on K-theory, are exact in the middle.

This can be extended to a long exact cohomology sequence,
which is periodic because of Bott periodicity.
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Let
0—-J—>A—A/J—0

be an exact sequence of C*-algebras.

K-theory Th
eorem

There is aboundary map
9 : Ks1(A)J) = Ki(J),
such that the following diagram is exact:
Ko(J) —— Ko(A) ——= Ko(A/J) = Ka(A/J)

o lo

Ki(A/J) =— Ki(A) Ki(J).
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The K-theory of the C*-algebra of
an abelian group

If G is an abelian group, then we saw that
C*(6) = C;(G) = Go(G).
So
Ki(C*(6)) = Ki(C/(G)) = Kj(Go(G)) = K/(G).
In general, the rough idea is that

“K( (G)



C*-algebras
and K-theory

Peter Hochs

K-theory of
group
C*-algebras

The representation ring
Let K be a compact Lie group.

Definition

The representation ring R(K) of K is the abelian group
generated by equivalence classes of finite-dimensional
representations of K, subject to the relation

[VI+[W]=[veWw],

for irreducible representations (V,m) and (W, p) of K.

Explicitly,

R(K) ={[V]— [W];(V,=), (W, p) fin. dim. reps. of K};
={ Z m[V]; mr € Z, finitely many nonzero}.
(V,m)ek
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The K-theory of the C*-algebra of

a compact group

For compact groups K, the K-theory group Ko(C*(K)) is
isomorphic to (the abelian group underlying) the representation
ring R(K), while K1(C*(K)) = 0.

Indeed, let (V/, ) be a finite-dimensional representation of K,
feCK) ve V. Set

f-vi=mn(f)v= /K f(k)m(k)v dk, (5)

for a Haar measure dk on K. This extends to a f.g. projective
C*(K)-module structure on V.

Proposition

This procedure induces an isomorphism of abelian groups

R(K) = Ko(C*(K)). (6)
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Proof

The proof is based on the facts that
o C'(K) = @(v,w)ek B(V);
e K-theory preserves finite direct sums;
e K-theory preserves inductive limits;
e Ko(B(V)) =2Z-[V].

Therefore,

Ko(C*(K)= @ KB\V)= P z-[vVI=

(V,mek (V,m)ek

(Recall that for compact groups, the full and reduced
C*-algebras coincide.)

R(K).
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The unitary dual of a noncompact,
nonabelian group

Unitary irreducible representations of

SL(R) = {A e My(R);detA=1}:

N 3

| __Principal series

L —]
Complementary
series Discrete series
/._; o
Trivial representation Limits of discrete

series
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Ko(C*(G)) for semisimple Lie
groups
Let G be a semisimple Lie group with discrete series

representations , i.e. all matrix coefficients g — (x,7(g) - y)
are in L2(G).

Let (H,m) be a discrete series representation of G. Fix x € H
of norm 1, and define f; € [?(G) by

f=(g) = (x,8 - X)u-

Set
dr = ”f7T||Z21(G)7

the formal degree of w. Then d,f; € C}(G) is a projection.
[r] := [drfx] € Ko(C7(G))

embeds the discrete series into Ko(C(G)). (K1(C(G)) =0.)
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Generalising K.(C*(G))

K-theory of the equivariant Roe algebras defined before
generalises K-theory of group C*-algebras.

Let (X, d) be a metric space, on which a locally compact group
G acts properly, freely and isometrically, such that X/G is
compact. Then

Ki(Ce(X)) = Ki(C7(6)),

with CZ(X) the equivariant Roe algebra of X. This equality
holds for both reduced and maximal Roe algebras and group
C*-algebras.
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