C*-algebras and K-theory Peter Hochs

C*-algebras

Group C^* -algebras

K-theory

K-theory of group C^* -algebras

 C^* -algebras and K-theory

Peter Hochs

Strings JC, 11 June, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Peter Hochs

Introduction C*-algebras Group C*-algebras

K-theory

K-theory of group C^* -algebras

1 Introduction

2 C*-algebras

3 Group C*-algebras

4 K-theory

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Peter Hochs

Introduction

 C^* -algebras

Group C^* -algebra:

K-theory

K-theory of group C^* -algebras

Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Idea

Peter Hochs

C*-algebras and K-theory

- C^* -algebra
- Group C*-algebras
- K-theory
- K-theory of group C^* -algebras
- 1 Study locally compact Hausdorff topological spaces through their algebras of continuous functions. The product on this algebra is pointwise multiplication, which is commutative.
- 2 Allow a suitable class of possibly noncommutative algebras: C*-algebras, and view these as algebras of functions of "noncommutative spaces". This can be used to study e.g. non-Hausdorff spaces.
- Generalise techniques from (algebraic) topology to all C*-algebras. This works very well for K-theory.

Goal: Introduce C^* -algebras and their K-theory, and give examples relevant to topology and representation theory.

References

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction

C*-algebras and K-theory

Peter Hochs

- C^* -algebras
- Group C^* -algebras
- K-theory
- K-theory of group C*-algebras

- Wegge–Olsen: *K*-theory and *C**-algebras (introductory);
- Blackadar: *K*-theory for operator algebras (comprehensive reference).

Peter Hochs

Introduction

 C^* -algebras

Group C^* -algebras

K-theory

K-theory of group C^* -algebras

 C^* -algebras

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Peter Hochs

Introduction

 C^* -algebras

Group C*-algebra:

K-theory

K-theory of group C*-algebras

Continuous functions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

From now on, let X be a locally compact Hausdorff space.

Definition

A continuous function $f : X \to \mathbb{C}$ vanishes at infinity if for all $\varepsilon > 0$, there is a compact subset $C \subset X$, such that for all $x \in X \setminus C$, one has $|f(x)| < \varepsilon$. (If X is compact, all functions vanish at infinity.)

Let $C_0(X)$ be the vector space of all such functions on X.

Peter Hochs

Introduction

 C^* -algebras

Group C*-algebras

K-theory

K-theory of group C*-algebras

Structure on $C_0(X)$

For $f,g \in C_0(X)$ and $x \in X$, set

$$\begin{split} \|f\|_{\infty} &:= \sup_{y \in X} |f(y)|;\\ f^*(x) &:= \overline{f(x)};\\ (fg)(x) &= f(x)g(x). \end{split}$$

Then $C_0(X)$ is a Banach space in the norm $\|\cdot\|_{\infty}$, and a commutative algebra over \mathbb{C} with respect to the pointwise product (1).

Furthermore, we have for all $f, g \in C_0(X)$,

$$\|fg\|_{\infty} \leq \|f\|_{\infty} \|g\|_{\infty};$$

$$\|f^*f\|_{\infty} = \|f\|_{\infty}^2.$$

General C^* -algebras have the same structure and properties, apart from commutativity.

Peter Hochs

Introduction

 C^* -algebras

Group C*-algebras

K-theory

K-theory of group C*-algebras

C^* -algebras

A C^* -algebra is a Banach space $(A, \|\cdot\|)$, equipped with an associative bilinear product $(a, b) \mapsto ab$ and an antilinear map $a \mapsto a^*$ whose square is the identity, such that for all $a, b \in A$, we have

$$(ab)^* = b^*a^*;$$

 $\|ab\| \le \|a\| \|b\|;$
 $\|a^*a\| = \|a\|^2.$

A **homomorphism** of C^* -algebras is a linear homomorphism of algebras that intertwines star operations. Such homomorphisms are automatically bounded.

It follows from the C*-algebra axioms that $||a^*|| = ||a||$ for all a in a C*-algebra.

Peter Hochs

Introduction

 C^* -algebras

Group C*-algebras

K-theory

K-theory of group C*-algebras

Commutative C^* -algebras

Theorem (Gelfand–Naimark)

Every commutative C^* -algebra is isomorphic to the C^* -algebra of continuous functions that vanish at infinity on a locally compact Hausdorff space. If two commutative C^* -algebras $C_0(X)$ and $C_0(Y)$ are isomorphic, then X and Y are homeomorphic.

The inverse construction to $X \mapsto A = C_0(X)$ is

Commutative C^* -algebra $A \mapsto$ Space X of nonzero homomorphisms (characters) $A \to \mathbb{C}$.

Peter Hochs

Introduction

 C^* -algebras

Group C*-algebra

K-theory

K-theory of group C*-algebras A **proper** continuous map f between two locally compact Hausdorff spaces X and Y induces a homomorphism of C^* -algebras

$$f^*: C_0(Y) \rightarrow C_0(X),$$

defined by pulling back functions along f. In this way, C_0 is a **contravariant functor** from the category of locally compact Hausdorff spaces, with proper continuous maps, to the category of commutative C^* -algebras.

Together with the fact that all homomorphisms between two commutative C^* -algebras $C_0(X)$ and $C_0(Y)$ are defined by pulling back along some proper continuous map, the Gelfand–Naimark theorem implies that this functor defines an **equivalence of categories**.

Functoriality

Dictionary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction

C*-algebras and K-theory

Peter Hochs

 C^* -algebras

Group C^* -algebras

K-theory

K-theory of group C^* -algebras

Topological spaces	C^* -algebras
compact	unital
locally compact & Hausdorff	commutative
connected component	direct summand
Cartesian product	tensor product

Peter Hochs

Introduction

 C^* -algebras

Group C*-algebra

K-theory

K-theory of group C^* -algebras

Operators on Hilbert spaces

Let \mathcal{H} be a Hilbert space, and let $\mathcal{B}(\mathcal{H})$ be the algebra of **bounded operators** on \mathcal{H} . For $a \in \mathcal{B}(\mathcal{H})$, let ||a|| be the operator norm of a, and let a^* be its adjoint, defined by

$$(x,ay) = (a^*x,y)$$

for all $x, y \in \mathcal{H}$. Then $\mathcal{B}(\mathcal{H})$, equipped with these structures, is a C^* -algebra.

In fact, **all** C^* -algebras can be realised as subalgebras of an algebra of bounded operators on a Hilbert space.

Peter Hochs

Introduction

 C^* -algebras

Group C*-algebras

K-theory

K-theory of group C*-algebras

Theorem (Gelfand–Naimark)

Every C*-algebra is isomorphic to a norm-closed subalgebra of $\mathcal{B}(\mathcal{H})$ that in addition is closed under the *-operation, for some Hilbert space \mathcal{H} .

Example

For a suitable Borel measure on a locally compact Hausdorff space X (the counting measure always works), the representation of $C_0(X)$ in $L^2(X)$ as multiplication operators yields an embedding of $C_0(X)$ into $\mathcal{B}(L^2(X))$.

Example

The algebra $\mathcal{K}(\mathcal{H})$ of **compact operators** on a Hilbert space \mathcal{H} is an ideal in $\mathcal{B}(\mathcal{H})$.

Peter Hochs

Introduction

 C^* -algebras

```
Group
C*-algebras
```

K-theory

K-theory of group C*-algebras

Tensor products

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let A and B be two C^{*}-algebras. The algebraic tensor product of A and B can be completed in various norms to give a C^* -algebra $A \otimes B$.

For some C^* -algebras A, such as commutative ones, all such completions are equal (for any B). These C^* -algebras are called **nuclear**.

 $C_0(X)\otimes C_0(Y)\cong C_0(X\times Y).$

Peter Hochs

Introduction

 C^* -algebra

Group C^* -algebras

K-theory

K-theory of group C^* -algebras

Group C^* -algebras

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Peter Hochs

Introduction

C*-algebras

Group C^* -algebras

K-theory

K-theory of group C*-algebras

Convolution algebras

Let G be a locally compact Hausdorff topological group, equipped with a left Haar measure dg. For two functions $\varphi, \psi \in C_c(G)$, their **convolution product** $\varphi * \psi$ is defined by

$$(\varphi * \psi)(g) := \int_{G} \varphi(g') \psi(g'^{-1}g) dg'.$$
(2)

The function φ^* is defined by

$$\varphi^*(g) := \overline{\varphi(g^{-1})} \Delta(g)^{-1}, \tag{3}$$

where Δ is the modular function on G with respect to dg, defined by $d(gh) = \Delta(h)dg$ for all $h \in G$. For **unimodular** groups, Δ is the constant function 1.

Peter Hochs

Introductior

 C^* -algebra

Group C^* -algebras

K-theory

K-theory of group C*-algebras

The maximal group C^* -algebra

For a unitary representation (\mathcal{H}, π) of G, and $\varphi \in C_c(G)$, we have the operator

$$\pi(arphi) := \int_{\mathcal{G}} arphi(g) \, dg \quad \in \mathcal{B}(\mathcal{H}).$$

Definition

The **full/maximal** C^* -algebra $C^*(G)$ of G is the completion of the convolution algebra $C_c(G)$ in the norm

$$\|\varphi\| := \sup_{(\mathcal{H},\pi)} \|\pi(\varphi)\|_{\mathcal{B}(\mathcal{H})} \leq \|\varphi\|_{L^1(G)}.$$

The supremum runs over all unitary representations (\mathcal{H},π) of G.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Peter Hochs

Introduction

 C^* -algebras

Group C^* -algebras

K-theory

K-theory of group C*-algebras

The reduced group C^* -algebra

Definition

The **reduced** C^* -algebra $C^*_r(G)$ of G is the completion of $C_c(G)$ in the norm $\|\cdot\|_r$, given by

$$\|\varphi\|_r := \|\lambda^{\mathsf{G}}(\varphi)\|_{\mathcal{B}(L^2(\mathsf{G}))}.$$

Here $\lambda^{G} : G \to U(L^{2}(G))$ is the left regular representation $(\lambda^{G}(g)\varphi)(g') = \varphi(g^{-1}g').$

Note that $\lambda^{G}(\varphi)\psi = \varphi * \psi$ for all $\varphi \in C_{c}(G)$ and $\psi \in L^{2}(G)$.

The group G is called **amenable** if $C_r^*(G) = C^*(G)$. I.e. all irreducible unitary representations occur in $(L^2(G), \lambda^G)$. **Examples:** G abelian or compact.

The unitary dual

Introduction

C*-algebras and K-theory

Peter Hochs

 C^* -algebra

Group C^* -algebras

K-theory

K-theory of group C*-algebras Consider the **unitary dual** \hat{G} and the **tempered unitary dual** \hat{G}_{temp} of G:

• $\hat{G} := \{$ unitary irreducible representations of $G \};$

•
$$\hat{G}_{\text{temp}} := \{ (\mathcal{H}, \pi) \in \hat{G}; \mathcal{H} \hookrightarrow L^2(G) \}.$$

There is a natural topology on \hat{G} , which is not Hausdorff in general.

Idea:

• $C^*(G) =$ "{noncommutative functions on \hat{G} }";

• $C_r^*(G) =$ "{noncommutative functions on \hat{G}_{temp} }".

This is true for **abelian** groups G:

•
$$\hat{G}_{ ext{temp}} = \hat{G}$$
, and

•
$$C^*(G) = C^*_r(G) = C_0(\hat{G}),$$

via the Fourier transform.

Peter Hochs

Introduction

 C^* -algebra

Group C^* -algebras

K-theory

K-theory of group C*-algebras

The C*-algebra of a compact group

Let ${\boldsymbol{K}}$ be a compact Lie group, and consider the direct sum

$$\bigoplus_{(V,\pi)\in\hat{K}} \mathcal{B}(V) := \{(a_{\pi})_{(V,\pi)\in\hat{K}}; a_{\pi}\in\mathcal{B}(V), \lim_{\pi\to\infty} \|a_{\pi}\|_{\mathcal{B}(V)} = 0\}.$$

I.e. C_0 -sections of the bundle

$$(\mathcal{B}(V))_{(V,\pi)\in\hat{K}}\to\hat{K}.$$

Equipped with the norm

$$\|(a_\pi)_{\pi\in\hat{K}}\|:=\sup_{(V,\pi)\in\hat{K}}\|a_\pi\|_{\mathcal{B}(V)},$$

this becomes a C^* -algebra.

Peter Hochs

Introduction

C*-algebras

Group C^* -algebras

K-theory

K-theory of group C*-algebras

The C*-algebra of a compact group

Proposition

There is an isomorphism of C*-algebras

$$C^*_r(K) = C^*(K) \cong \bigoplus_{(V,\pi) \in \hat{K}} \mathcal{B}(V).$$

The right hand side is very similar to $C_0(\hat{K})$, up to replacing \mathbb{C} by matrix algebras $\mathcal{B}(V)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proof

イロト 不得 トイヨト イヨト

э

Consider the Hilbert space $\hat{L}^2(K) :=$

$$\Big\{a=(a_{\pi})_{(V,\pi)\in\hat{K}};a_{\pi}\in\mathcal{B}(V),(a,a):=\sum_{\pi\in\hat{K}}\mathrm{tr}(a_{\pi}^{*}a_{\pi})<\infty\Big\}.$$

K-theory of group C*-algebras

Group C^* -algebras

C*-algebras and K-theory

Peter Hochs

Peter–Weyl theorem: the Plancherel transform $P: L^2(K) \rightarrow \hat{L}^2(K)$,

$$(Pf)_{(V,\pi)} = \sqrt{\dim V} \pi(f)$$

for $f \in L^2(K)$ and $\pi \in \hat{K}$, is a unitary isomorphism. The map $\varphi : C^*(K) \to \mathcal{B}(\hat{L}^2(K))$,

$$\varphi(f) = P\pi(f)P^{-1},$$

for $f \in C(K)$, is isomorphism of C*-algebras onto its image, which is $\bigoplus_{(V,\pi)\in\hat{K}} \mathcal{B}(V)$.

Roe algebras

The natural C^* algebras used in **coarse geometry** are **Roe** algebras.

Let

C*-algebras and K-theory

Peter Hochs

Group C^* -algebras

- (X, d) be a metric space in which all closed balls are compact;
- *G* be a locally compact group acting properly and isometrically on *X*;
- *dx* be a *G*-invariant Borel measure on *X* for which every nonempty open set has positive volume;
- *H* be any infinite-dimensional separable Hilbert space, such as *l*²(ℕ).

Definition

An operator $T \in \mathcal{B}(L^2(X, \mathcal{H}; dx))$ has **finite propagation** if there is an R > 0, such that for all $f_1, f_2 \in C_0(X)$ with supports at least a distance R apart, $f_1Tf_2 = 0$.

Roe algebras

Definition

C*-algebras and K-theory

Peter Hochs

Group C^* -algebras

The **reduced equivariant Roe algebra** of X is the closure $C^*_G(X)$ in $\mathcal{B}(L^2(X, \mathcal{H}; dx))$ of

```
\{T \in \mathcal{B}(L^2(X, \mathcal{H}; dx)); fT \text{ and } Tf \text{ compact};T \text{ has finite propagation};T \text{ is } G\text{-equivariant}\}.
```

(**Idea:** *G*-invariant operators with smooth kernels supported near the diagonal. E.g. finitely propagating parametrices of *G*-equivariant elliptic operators on X.)

There is also a **maximal equivariant Roe algebra**, completed in a norm similar to the maximal group C^* algebra norm.

Peter Hochs

Introduction

 C^* -algebras

Group C^* -algebras

K-theory

K-theory of group C*-algebras Roe algebras and group C^* -algebras

Roe algebras generalise group C^* -algebras, in the sense that

 $C^*_G(|G|) \cong C^*(G) \otimes \mathcal{K}(\mathcal{H}).$

- |G| is the group G, considered as a metric space with respect to a left invariant metric for which all closed balls are compact.
- We will see that tensoring with $\mathcal{K}(\mathcal{H})$ does not change the *K*-theory of a *C**-algebra.

• This holds for reduced and maximal Roe algebras and group *C**-algebras.

Peter Hochs

Introduction

 C^* -algebras

Group C^* -algebras

K-theory

K-theory of group C^* -algebras

K-theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Peter Hochs

Introduction

 C^* -algebra

Group C*-algebra

K-theory

K-theory of group C*-algebras

Topological K-theory

We first consider a **compact** Hausdorff space X.

Definition

The **(topological)** *K*-**theory** of *X* is the abelian group $K^0(X)$ whose generators are isomorphism classes [*E*] of (complex) vector bundles $E \to X$, subject to the relation

$$[E] + [F] = [E \oplus F]$$

for all vector bundles E and F over X.

Note that a general element of $K^0(X)$ is a formal difference [E] - [F] of isomorphism classes of vector bundles.

Functoriality

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

and *K*-theory Peter Hochs

 C^* -algebras

Introduction

C^{*}-algebras

Group C^{*}-algebra

K-theory

K-theory of group C^* -algebras

A continuous map $f : X \to Y$ between compact Hausdorff spaces induces a map $f^* : K^0(Y) \to K^0(X)$, defined via the **pullback** of vector bundles along f.

This turns K^0 into a **contravariant functor** from the category of compact Hausdorff spaces to the category of abelian groups.

Peter Hochs

Introduction

C*-algebras

Group C*-algebras

K-theory

K-theory of group C^* -algebras

K-theory vs. cohomology

Theorem

For compact X, there is an isomorphism (Chern character)

$$\chi^0: \mathcal{K}^0(X)\otimes \mathbb{Q} \xrightarrow{\cong} \bigoplus_{n \ even} H^n(X; \mathbb{Q}).$$

Here $H^n(X; \mathbb{Q})$ is the nth (e.g. Čech) cohomology group of X with rational coefficients.

(There is an analogous isomorphism for odd K-theory, which will be defined later.)

Peter Hochs

Introduction

Group C^{*}-algebras

K-theory

K-theory of group C^* -algebras

Noncompact spaces

Let $X^+ = X \cup \{\infty\}$ be the one-point compactification of a locally compact Hausdorff space X. Let

```
i: \{\infty\} \hookrightarrow X^+
```

be the inclusion map of the point at infinity. Consider the functorially induced map

$$i^*: K^0(X^+) \rightarrow K^0(\{\infty\}).$$

Vector bundles over the one-point space $\{\infty\}$ are just finite-dimensional vector spaces. Therefore $\mathcal{K}^0(\{\infty\}) \cong \mathbb{Z}$, via the dimension map.

Definition

The K-theory of the locally compact Hausdorff space X is the kernel of the map i^* . It is denoted by $K^0(X)$.

Peter Hochs

Introduction

 C^* -algebras

Group C*-algebra:

K-theory

K-theory of group C*-algebras A continuous map between locally compact Hausdorff spaces

Functoriality

 $f: X \to Y$

induces a map

$$f^*: K_0(Y) \rightarrow K_0(X)$$

if it extends continuously to a map between the one-point compactifications of X and Y.

This means that f should be **proper** $(f^{-1}(C))$ is compact if $C \subset Y$ is compact). Hence topological K-theory is a **contravariant functor** from the category of locally compact Hausdorff spaces, with proper continuous maps, to the category of abelian groups.

Peter Hochs

Introduction

 C^* -algebra

Group C*-algebra:

K-theory

K-theory of group C*-algebras

Vector bundles and C(X)-modules

Suppose that X is compact, so that $C_0(X) = C(X)$. If $E \to X$ is a vector bundle, then the space $\Gamma(E)$ of its continuous sections has the natural structure of a C(X)-module, given by pointwise multiplication.

• $\Gamma(E) \cong \Gamma(F)$ as C(X)-modules iff $E \cong F$.

•
$$\Gamma(E \oplus F) \cong \Gamma(E) \oplus \Gamma(F).$$

• For any vector bundle $E \to X$, there is a vector bundle $F \to X$ such that $E \oplus F \cong X \times \mathbb{C}^n$.

Then

$$\Gamma(E)\oplus\Gamma(F)\cong\Gamma(E\oplus F)=\Gamma(X\times\mathbb{C}^n)\cong C(X)^n.$$

Peter Hochs

Introduction

 C^* -algebra

Group C*-algebra:

K-theory

K-theory of group C*-algebras

Finitely generated projective modules

More generally, a module \mathfrak{M} over a C^* -algebra (or ring) A is called **finitely generated** and **projective** if there exists an A-module \mathfrak{N} such that $\mathfrak{M} \oplus \mathfrak{N}$ is a finitely generated free A-module, i.e. of the form A^n for some $n \in \mathbb{N}$.

Any finitely generated projective C(X)-module is isomorphic to the module $\Gamma(E)$, for some vector bundle $E \to X$.

Theorem (Serre-Swan)

The K-theory of the compact Hausdorff space X is the abelian group whose generators are isomorphism classes $[\mathfrak{M}]$ of finitely generated projective C(X)-modules, subject to the relation

 $[\mathfrak{M}]+[\mathfrak{N}]=[\mathfrak{M}\oplus\mathfrak{N}]$

for all finitely generated projective modules \mathfrak{M} and \mathfrak{N} over C(X).

Peter Hochs

Introduction

 C^* -algebras

Group C^{*}-algebra

K-theory

K-theory of group C*-algebras

K-theory of unital C^* -algebras

Let A be a C^* -algebra with a unit.

Definition

The K-theory of A is the abelian group whose generators are isomorphism classes $[\mathfrak{M}]$ of finitely generated projective A-modules, subject to the relation

 $[\mathfrak{M}]+[\mathfrak{N}]=[\mathfrak{M}\oplus\mathfrak{N}]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

for all finitely generated projective modules $\mathfrak M$ and $\mathfrak N$ over A.

Functoriality

Let

C⁻algebras

C*-algebras and K-theory

Peter Hochs

Group C*-algebra

K-theory

K-theory of group C*-algebras

$f: A \rightarrow B$

be a unital *-homomorphisms between unital C^* -algebras, and \mathfrak{M} a finitely generated projective (right) *A*-module. Form the f.g. projective *B*-module

$$\mathfrak{M} \otimes_f B := \mathfrak{M} \otimes_{\mathbb{C}} B/(m \cdot a) \otimes b \sim m \otimes (f(a)b).$$

for all $m \in \mathfrak{M}$, $a \in A$ and $b \in B$. This induces a map

 $f_*: K_0(A) \rightarrow K_0(B).$

This makes the K-theory of unital C^* -algebras a **covariant** functor. (Hence the **subscript** 0.)

Peter Hochs

Introduction

 C^* -algebras

Group C^{*}-algebra

K-theory

K-theory of group C*-algebras

Pullbacks of vector bundles

Functoriality of C^* -algebraic K-theory generalizes functoriality of topological K-theory.

Lemma

Let X and Y be compact Hausdorff spaces, let $f : X \to Y$ be a continuous map, and let $E \to Y$ be a vector bundle. Consider the homomorphism of C*-algebras $f^* : C(Y) \to C(X)$ defined by pulling back functions along f. There is an isomorphism

$$\Gamma(X, f^*E) \cong \Gamma(Y, E) \otimes_{f^*} C(X).$$

Peter Hochs

Introduction C^* -algebras Group C^* -algebras

K-theory

K-theory of group C^* -algebras

Compactification and unitisation

The extension of K-theory to non-unital C^* -algebras is analogous to the extension of topological K-theory to noncompact spaces.

If X is a locally compact Hausdorff space, then

$$\mathcal{C}_0(X)^+ := \mathcal{C}_0(X) \oplus \mathbb{C} \cong \mathcal{C}(X^+).$$

The multiplication, star operation and the norm on $C_0(X)^+$ are defined by

$$(f + z)(g + w) := fg + zg + wf + zw;$$

 $(f + z)^* := f^* + \overline{z};$
 $\|f + z\| := \sup_{x \in X} |f(x) + z| = \|f + z\|_{\mathcal{B}(C_0(X))},$

for $f, g \in C_0(X)$ and $z, w \in \mathbb{C}$. The resulting C*-algebra $C_0(X)^+$ is called the **unitisation** of $C_0(X)$.

Peter Hochs

Introduction

 C^* -algebras

Group C*-algebra:

K-theory

K-theory of group C*-algebras

Compactification and unitisation

The inclusion map $i : \{\infty\} \hookrightarrow X^+$ induces the map

$$C^*: C_0(X^+) \cong C_0(X)^+ \to \mathbb{C}$$
 (4)

given by the natural projection onto the term $\mathbb{C}.$ Then we have $\ensuremath{\mathsf{Proposition}}$

The topological K-theory of X is the kernel of the map

 $i^*: \mathcal{K}_0(\mathcal{C}(X^+)) o \mathcal{K}_0(\mathbb{C}) \cong \mathbb{Z}$

induced by (4).

Peter Hochs

Introduction

 C^* -algebra

Group C^{*}-algebra

K-theory

K-theory of group C*-algebras

Unitisations

For a general C^* -algebra, we proceed as follows.

Definition

Let A be a C*-algebra. Its **unitisation** A^+ is defined as the algebra $A^+ := A \oplus \mathbb{C}$, with multiplication, star operation and norm given by

$$(a+z)(b+w) := ab + zb + wa + zw;$$

 $(a+z)^* := a^* + \bar{z};$
 $\|a+z\|_{A^+} := \|a+z\|_{\mathcal{B}(A)},$

for $a, b \in A$ and $z, w \in \mathbb{C}$. Here $||a + z||_{\mathcal{B}(A)}$ is the norm of a + z as a bounded operator on the Banach space A, given by left multiplication.

Peter Hochs

Introduction

 C^* -algebra

Group C*-algebras

K-theory

K-theory of group C^* -algebras

K-theory of nonunital C^* -algebras

For a C^* -algebra A, consider the map

$$i^*: A^+ \to \mathbb{C},$$

 $a + z \mapsto z.$

We denote the induced map on K-theory by

$$i^*: K_0(A^+) o K_0(\mathbb{C}) \cong \mathbb{Z}.$$

Definition

The *K*-**theory** of *A* is the kernel of the map i^* . It is denoted by $K_0(A)$.

Hence for all locally compact Hausdorff spaces, we have $K^0(X) = K_0(C_0(X)).$

Peter Hochs

Introduction

C*-algebras

Group C*-algebras

K-theory

K-theory of group C*-algebras

K-theory via projections

The K-theory of a unital C^* -algebra A is often defined in terms of **projections** in the infinite matrix algebra

$$M_{\infty}(A):=\lim_{\longrightarrow}M_n(A),$$

i.e. elements p such that $p^2 = p = p^*$. These correspond to f.g. projective A-modules via $p \mapsto p(A^n)$, for p a projection in $M_n(A)$.

The functoriality of K-theory is then induced by

$$f(p)_{ij}=f(p_{ij}) \in B,$$

if $f: A \to B$ is a homomorphism of C^* -algebras and $p \in M_{\infty}(A)$ is a projection.

Peter Hochs

Introduction

Group C*-algebra

K-theory

K-theory of group C*-algebras

Unital vs. nonunital algebras

In the projection picture another reason why K-theory for non-unital C^* -algebras has to be defined separately becomes apparent.

Indeed, if X is a connected, locally compact but not compact Hausdorff space, then there are no nonzero projections in $M_{\infty}(C_0(X))$, because the trace of such a projection is a constant function on X.

Peter Hochs

Introduction

C*-algebra

Group C*-algebra

K-theory

K-theory of group C^* -algebras

Higher K-groups

For any integer n, and any C^* -algebra A, one has the K-theory group

$$K_n(A) := K_0(A \otimes C_0(\mathbb{R}^n)).$$

Bott periodicity is the statement that $K_{n+2}(A) \cong K_n(A)$ for all such *n* and *A* (naturally in *A*). Therefore, it is enough to consider the *K*-theory groups $K_0(A)$ and $K_1(A)$.

(There is also a direct characterisation of $K_1(A)$, in terms of the group of connected components of the invertible matrices over A.)

Examples

A	$K_0(A)$	$K_1(A)$
\mathbb{C}	\mathbb{Z}	0
$M_n(\mathbb{C})$	\mathbb{Z}	0
$\mathcal{K}(\mathcal{H})$	\mathbb{Z}	0
$\mathcal{B}(\mathcal{H})$	0	0
$\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$	0	\mathbb{Z}
$C_0(\mathbb{R}^{2n})$	\mathbb{Z}	0
$C_0(\mathbb{R}^{2n+1})$	0	\mathbb{Z}
$C(S^{2n})$	\mathbb{Z}^2	0
$C(S^{2n+1})$	\mathbb{Z}	\mathbb{Z}
$C(\mathbb{T}^n)$	$\mathbb{Z}^{2^{n-1}}$	$\mathbb{Z}^{2^{n-1}}$

• *H* separable, infinite-dimensional;

C*-algebras and K-theory

Peter Hochs

K-theory

• Stability: $K_j(A \otimes \mathcal{K}(\mathcal{H})) = K_j(A)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Half-exactness

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem If

C*-algebras and K-theory

Peter Hochs

K-theory of group C^* -algebras

$$0 \rightarrow J \rightarrow A \rightarrow A/J \rightarrow 0$$

is an exact sequence of C^* -algebras, then the sequences

$$K_j(J) o K_j(A) o K_j(A/J)$$

induced on K-theory, are exact in the middle.

This can be extended to a long exact cohomology sequence, which is periodic because of Bott periodicity.

Peter Hochs

Introduction

 C^* -algebras

Group C*-algebra

K-theory

K-theory of group C*-algebras

The six term exact sequence

Let

 $0 \rightarrow J \rightarrow A \rightarrow A/J \rightarrow 0$

be an exact sequence of C^* -algebras.

Theorem There is aboundary map

$$\partial: K_{j+1}(A/J) \to K_j(J),$$

such that the following diagram is exact:

$$\begin{array}{c} K_{0}(J) \longrightarrow K_{0}(A) \longrightarrow K_{0}(A/J) \cong K_{2}(A/J) \\ \downarrow^{\partial} \\ K_{1}(A/J) \longleftarrow K_{1}(A) \longleftarrow K_{1}(J). \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Peter Hochs

Introduction

C*-algebras

Group C^* -algebras

K-theory

K-theory of group C^* -algebras

K-theory of group *C**-algebras

Peter Hochs

Introduction

C*-algebra

Group C*-algebra

K-theory

K-theory of group C^* -algebras

The K-theory of the C^* -algebra of an abelian group

If G is an **abelian** group, then we saw that $C^*(G) = C^*_r(G) = C_0(\hat{G}).$ So

$$K_j(C^*(G)) = K_j(C^*_r(G)) = K_j(C_0(\hat{G})) = K^j(\hat{G}).$$

In general, the rough idea is that

$$K_{j}(C^{*}(G)) = K^{j}(\hat{G});$$

 $K_{j}(C^{*}_{r}(G)) = K^{j}(\hat{G}_{temp}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Peter Hochs

Introduction

 C^* -algebra

Group C^{*}-algebra

K-theory

K-theory of group C^* -algebras

The representation ring

Let K be a compact Lie group.

Definition

The **representation ring** R(K) of K is the abelian group generated by equivalence classes of finite-dimensional representations of K, subject to the relation

$$[V] + [W] = [V \oplus W],$$

for irreducible representations (V, π) and (W, ρ) of K.

Explicitly,

$$R(K) = \{ [V] - [W]; (V, \pi), (W, \rho) \text{ fin. dim. reps. of } K \};$$
$$= \{ \sum_{(V,\pi) \in \hat{K}} m_{\pi}[V]; m_{\pi} \in \mathbb{Z}, \text{ finitely many nonzero} \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Peter Hochs

Introduction

 C^* -algebra

Group C*-algebras

K-theory

K-theory of group C^* -algebras

The *K*-theory of the *C**-algebra of a compact group

For compact groups K, the K-theory group $K_0(C^*(K))$ is isomorphic to (the abelian group underlying) the representation ring R(K), while $K_1(C^*(K)) = 0$.

Indeed, let (V, π) be a finite-dimensional representation of K, $f \in C(K)$, $v \in V$. Set

$$f \cdot v := \pi(f)v = \int_{\mathcal{K}} f(k)\pi(k)v \, dk, \qquad (5)$$

for a Haar measure dk on K. This extends to a f.g. projective $C^*(K)$ -module structure on V.

Proposition

This procedure induces an isomorphism of abelian groups

$$R(K) \cong K_0(C^*(K)). \tag{6}$$

Peter Hochs

Introductior

 C^* -algebras

Group C*-algebras

K-theory

K-theory of group C^* -algebras

The proof is based on the facts that

- $C^*(K) \cong \bigoplus_{(V,\pi) \in \hat{K}} \mathcal{B}(V);$
- K-theory preserves finite direct sums;
- K-theory preserves inductive limits;
- $K_0(\mathcal{B}(V)) = \mathbb{Z} \cdot [V].$

Therefore,

$$\mathcal{K}_0(\mathcal{C}^*(\mathcal{K})) = \bigoplus_{(V,\pi)\in\hat{\mathcal{K}}} \mathcal{K}_0(\mathcal{B}(V)) = \bigoplus_{(V,\pi)\in\hat{\mathcal{K}}} \mathbb{Z} \cdot [V] = \mathcal{R}(\mathcal{K}).$$

(Recall that for compact groups, the full and reduced C^* -algebras coincide.)

Proof

C*-algebras and K-theory Peter Hochs

C*-algebra

Group C*-algebra

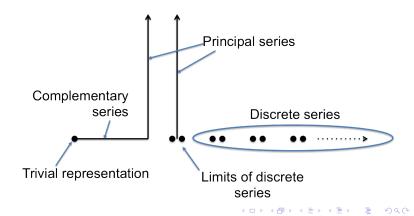
K-theory

K-theory of group C^* -algebras

The unitary dual of a noncompact, nonabelian group

Unitary irreducible representations of

 $SL_2(\mathbb{R}) = \{A \in M_2(\mathbb{R}); \det A = 1\}:$



Peter Hochs

Introduction

C*-algebra

Group C^* -algebra

K-theory

K-theory of group C^* -algebras

*K*₀(*C*^{*}(*G*)) for semisimple Lie groups

Let G be a semisimple Lie group with **discrete series** representations π , i.e. all matrix coefficients $g \mapsto (x, \pi(g) \cdot y)$ are in $L^2(G)$.

Let (\mathcal{H}, π) be a discrete series representation of G. Fix $x \in \mathcal{H}$ of norm 1, and define $f_{\pi} \in L^2(G)$ by

$$f_{\pi}(g) = (x, g \cdot x)_{\mathcal{H}}.$$

Set

$$d_{\pi} := \|f_{\pi}\|_{L^2(G)}^{-1},$$

the **formal degree** of π . Then $d_{\pi}f_{\pi} \in C_r^*(G)$ is a projection.

$$[\pi] := [d_\pi f_\pi] \in K_0(C_r^*(G))$$

embeds the discrete series into $K_0(C_r^*(G))$. $(K_1(C_r^*(G)) = 0.)_{0,0}$

Peter Hochs

Introduction

 C^* -algebra

Group C*-algebra:

K-theory

K-theory of group C^* -algebras

Generalising $K_*(C^*(G))$

K-theory of the equivariant **Roe algebras** defined before generalises K-theory of group C^* -algebras.

Let (X, d) be a metric space, on which a locally compact group G acts properly, freely and isometrically, such that X/G is **compact**. Then

$$K_j(C^*_G(X)) = K_j(C^*(G)),$$

with $C_G^*(X)$ the equivariant Roe algebra of X. This equality holds for both reduced and maximal Roe algebras and group C^* -algebras.