▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Hitchin fibration and real forms through spectral data

Laura Schaposnik Ruprecht-Karls Universität Heidelberg

School of Mathematics University of Adelaide June 2013

THE PLAN

- Higgs bundles.
 - Classical Higgs bundles
 - G^c-Higgs bundles.
- 2 The Hitchin fibration
 - Spectral data approach.
 - G-Higgs bundles as fixed points.
- Spectral data approach for real forms
 - Discrete fixed point set.
 - Pos. dim. fixed point set.
 - No fixed point set.
- Applications
 - Connected components.
 - Topological invariants.

Spectral data also used in arXiv:1305.4638 with D. Baraglia.

Based on: arXiv:1301.1981 arXiv:1111.2550

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

CLASSICAL HIGGS BUNDLES

 Σ compact Riemann surface of genus g > 2, canonical bundle $K = T^*\Sigma$.

Definition

A *Higgs bundle* on a compact Riemann surface Σ of genus g > 1, is a pair (E, Φ) for E a holomorphic vector bundle on Σ and Φ a section in $H^0(\Sigma, \text{End}(E) \otimes K)$. See example.

CLASSICAL HIGGS BUNDLES

 Σ compact Riemann surface of genus g > 2, canonical bundle $K = T^*\Sigma$.

Definition

A *Higgs bundle* on a compact Riemann surface Σ of genus g > 1, is a pair (E, Φ) for E a holomorphic vector bundle on Σ and Φ a section in $H^0(\Sigma, \text{End}(E) \otimes K)$. See example.

The *slope* of a vector bundle F be $\mu := \deg(F)/\operatorname{rk}(F)$. A Higgs bundle (E, Φ) is

- *stable* if for each Φ -invariant subbundle *F* one has $\mu(F) < \mu(E)$;
- semi stable if for each Φ-invariant subbundle F one has μ(F) ≤ μ(E);
- *polystable* if $(E, \Phi) = (E_1, \Phi_1) \oplus (E_2, \Phi_2) \oplus \dots (E_r, \Phi_r)$, where (E_i, Φ_i) is stable with $\mu(E_i) = \mu(E)$ for all *i*.

See example.

G^c-HIGGS BUNDLES

 G^c be a complex semisimple Lie group.

Definition

A G^c -Higgs bundle is a pair (P, Φ) where

- *P* is a principal G^c -bundle over Σ ,
- Higgs field Φ is a holomorphic section of the vector bundle $\operatorname{Ad} P \otimes_{\mathbb{C}} K$,

for ad*P* the vector bundle associated to the adjoint representation.

• Can extend stability notions. Then, call \mathcal{M}_{G^c} the moduli space of *S*-equivalence classes of semi-stable G^c -Higgs bundles.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

G^c -Higgs bundles: Examples

- Classical Higgs bundles are given by $GL(n, \mathbb{C})$ -Higgs bundles.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

G^c -Higgs bundles: Examples

- Classical Higgs bundles are given by $GL(n, \mathbb{C})$ -Higgs bundles.
- For $G^c \subset GL(n, \mathbb{C})$ one has classical Higgs bundles + extra conditions:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

G^c-HIGGS BUNDLES: EXAMPLES

- Classical Higgs bundles are given by $GL(n, \mathbb{C})$ -Higgs bundles.
- For $G^c \subset GL(n, \mathbb{C})$ one has classical Higgs bundles + extra conditions:
 - $SL(n, \mathbb{C})$

 $(E, \Phi) \text{ for } \begin{cases} E \operatorname{rk} n \text{ vector bundle s.t. } \Lambda^n E \cong \mathcal{O} \\ \Phi : E \to E \otimes K \text{ s.t. } \operatorname{Tr}(\Phi) = 0 \end{cases}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

G^c-HIGGS BUNDLES: EXAMPLES

- Classical Higgs bundles are given by $GL(n, \mathbb{C})$ -Higgs bundles.
- For $G^c \subset GL(n, \mathbb{C})$ one has classical Higgs bundles + extra conditions:
 - $SL(n, \mathbb{C})$

$$(E, \Phi) \text{ for } \begin{cases} E \operatorname{rk} n \text{ vector bundle s.t. } \Lambda^n E \cong \mathcal{O} \\ \Phi : E \to E \otimes K \text{ s.t. } \operatorname{Tr}(\Phi) = 0 \end{cases}$$

• $Sp(2n, \mathbb{C})$

 $(E, \Phi) \text{ for } \begin{cases} E \text{ rk } 2n \text{ symplectic vector bundle} \\ \text{symplectic form } \omega \text{ on } E \\ \Phi : E \to E \otimes K \text{ s.t. } \omega(\Phi v, w) = -\omega(v, \Phi w) \end{cases}$

THE HITCHIN FIBRATION

Let d_i , for i = 1, ..., k, be the degrees of the basic invariant polynomials p_i on the Lie algebra \mathfrak{g}^c of G^c .

Definition

The Hitchin fibration is

$$h : \mathcal{M}_{G^c} \longrightarrow \mathcal{A}_{G^c} := \bigoplus_{i=1}^{\kappa} H^0(\Sigma, K^{d_i}),$$
$$(E, \Phi) \mapsto (p_1(\Phi), \dots, p_k(\Phi)).$$

1.

- *h* is a proper map and dim $\mathcal{A}_{G^c} = \dim \mathcal{M}_{G^c}/2$.
- The Hitchin map makes the Higgs bundles moduli space into an integrable system.
- For most classical groups (not SO(2n, C)), we take polynomials on Tr(Φⁱ) for a basis of invariant polynomials.

See examples. N.Hitchin '87

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

SPECTRAL DATA APPROACH

▲□▶ ▲□▶ ▲ □▶ ★ □ ▶ □ ● の < @

Spectral data approach: $GL(n, \mathbb{C})$

$$h : (E, \Phi) \mapsto \operatorname{char}(\Phi) \in \bigoplus_{i=1}^{n} H^{0}(\Sigma, K^{i}) = \mathcal{A}_{GL(n,\mathbb{C})}$$

char(
$$\Phi$$
) = $\eta^n + a_1 \eta^{n-1} + a_2 \eta^{n-2} + \ldots + a_{n-1} \eta + a_n$

So the fibration looks as follows...

N.Hitchin '87, '07

▲□▶▲□▶▲□▶▲□▶ □ のQで

SPECTRAL DATA APPROACH: $GL(n, \mathbb{C})$ The construction

Starting with (S, M) we get a stable Higgs bundle (E, Φ) for

- The rank *n* vector bundle $E = \rho_* M$;
- The Higgs field Φ induced by

$$H^0(\rho^{-1}(\mathcal{U}), M) \xrightarrow{\eta} H^0(\rho^{-1}(\mathcal{U}), M \otimes \rho^*K)$$

for an open $\mathcal{U} \subset \Sigma$ by definition of direct image, gives

$$H^0(\mathcal{U}, \rho_*M) \longrightarrow H^0(\mathcal{U}, \rho_*M \otimes K)$$

Pushes down to $\Phi: E \to E \otimes K$.

Starting with a stable (E, Φ) we get the spectral data (S, M) for

- The smooth spectral curve *S* defined by $det(\eta \rho^* \Phi) = 0$;
- For the line bundle $U := \operatorname{coker}(\eta \rho^* \Phi)$, one has $\rho_* U = E$.

The generic fibre of the Hitchin fibration is isomorphic to the Jacobian of the spectral curve S

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

SPECTRAL DATA APPROACH: $SL(n, \mathbb{C})$ As classical Higgs bundles + extra data.

 $\Lambda^n E = \mathcal{O} \iff \Lambda^n \rho_* M \cong \mathcal{O}$

From [Beauville-Narasimhan-Ramanan, 1989],

$$\Lambda^{n} \rho_{*} M \cong \operatorname{Nm}(M) \otimes K^{-n(n-1)/2}.$$

$$\operatorname{Nm} : \operatorname{Pic}(S) \to \operatorname{Pic}(\Sigma)$$

$$\sum n_{i} p_{i} \mapsto \sum n_{i} \rho(p_{i})$$

Then $\Lambda^n \rho_* M = \mathcal{O}$ if and only if $\operatorname{Nm}(M) \cong K^{n(n-1)/2}$, or equivalently

$$M \otimes \rho^* K^{-(n-1)/2} \in \operatorname{Ker}(\operatorname{Nm}) =: \operatorname{Prym}(S, \Sigma).$$

The generic fibre of the Hitchin fibration is biholomorphically equivalent to the Prym variety $Prym(S, \Sigma)$.

G-HIGGS BUNDLES Set up

- *G* a real reductive Lie group;
- g^C complexified Lie algebra of *G*;
- $\mathfrak{m}^{\mathbb{C}}$ such that

$$\mathfrak{g}^{\mathbb{C}} = \mathfrak{h}^{\mathbb{C}} \oplus \mathfrak{m}^{\mathbb{C}}$$

- *H* ⊂ *G* the maximal compact subgroup;
- h^C complexified Lie algebra of *H*;
- Ad|_{H^C} : H^C → GL(m^C) is the isotropy representation.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Definition

A principal G-Higgs bundle is a pair (P, Φ) where

- *P* is a holomorphic principal $H^{\mathbb{C}}$ -bundle;
- Φ is a holomorphic section of $(P \times_{Ad} \mathfrak{m}^{\mathbb{C}}) \otimes K$.

See example.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

G-HIGGS BUNDLES AS FIXED POINTS

IN THE FIBRES OF THE G^c HITCHIN FIBRATION

- G a real form of G^c fixed by the anti-holomorphic involution τ
- ρ the compact real form of G^c .
- $\sigma = \rho \tau$ a holomorphic involution.

$$\Theta:(E,\Phi)\mapsto (\sigma(E),-\sigma(\Phi))$$

N.Hitchin '87, '92

G-HIGGS BUNDLES AS FIXED POINTS

IN THE FIBRES OF THE G^c HITCHIN FIBRATION

- G a real form of G^c fixed by the anti-holomorphic involution τ
- ρ the compact real form of G^c .
- $\sigma = \rho \tau$ a holomorphic involution.

See Example.

N.Hitchin '87, García-Prada – Gothen – Mundet '09, DAR ARA REAR R

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Spectral data approach I discrete intersection of $\mathcal{M}^{\Theta}_{\mathit{G^c}}$ with the smooth fibres

G-Higgs bundles for split real forms ($G = SL(n, \mathbb{R})$, $Sp(2n, \mathbb{R})$,...) Theorem (*thesis*)

The intersection of $\mathcal{M}_{G^c}^{\Theta}$ with the smooth fibres of the Hitchin fibration

 $h: \mathcal{M}_{G^c} \to \mathcal{A}_{G^c}.$

is the space of elements of order 2 over the regular locus of \mathcal{A}_{G^c} .

So we can study the fibration through the monodromy action... $G = SL(2, \mathbb{R})$ case (*thesis*)

What happens for other groups?

Positive dimensional intersection of $\mathcal{M}^{\Theta}_{G^c}$ with the smooth fibres

What kind of curve does $char(\Phi)$ define for a *G*-Higgs field Φ ?

Generically, a smooth curve for G = U(p, p), SU(p, p)...

Definition

A U(p,p)-Higgs bundle over Σ is a pair (E, Φ) where $E = V \oplus W$ for V, W rank p vector bundles over Σ , and Φ the Higgs field given by

$$\Phi = \left(egin{array}{cc} 0 & eta \ \gamma & 0 \end{array}
ight),$$

for $\beta : W \to V \otimes K$ and $\gamma : V \to W \otimes K$. When $\Lambda^p V \cong \Lambda^p W^*$, one has an SU(p,p)-Higgs bundle.

$$\det(x - \Phi) = x^{2p} + a_1 x^{2p-2} + \ldots + a_{p-1} x^2 + a_p$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙

Towards the spectral data for U(p,p)-Higgs bundles

• Smooth *S* given by $\eta^{2p} + a_1 \eta^{2p-2} + \ldots + a_{p-1} \eta^2 + a_p = 0$; • Smooth \overline{S} given by $\xi^p + a_1 \xi^{p-1} + \ldots + a_{p-1} \xi + a_p = 0$ for $\xi = \eta^2$; for η tautological section of $\rho^* K$ and $a_i \in H^0(\Sigma, K^{2i})$.

Can be adapted to study SU(p, p)-Higgs bundles...

Towards the spectral data for U(p,p)-Higgs bundles

• Smooth *S* given by $\eta^{2p} + a_1 \eta^{2p-2} + \ldots + a_{p-1} \eta^2 + a_p = 0$; • Smooth \overline{S} given by $\xi^p + a_1 \xi^{p-1} + \ldots + a_{p-1} \xi + a_p = 0$ for $\xi = \eta^2$; for η tautological section of $\rho^* K$ and $a_i \in H^0(\Sigma, K^{2i})$. • $M := \operatorname{coker}(\rho^* \Phi - \eta)$ line bundle on *S*.

SPECTRAL DATA APPROACH II

Spectral data for U(p, p)-Higgs bundles (*thesis*)

There is a one to one correspondence between U(p, p)-Higgs bundles $(V \oplus W, \Phi)$ on Σ with deg $V > \deg W$ and non-singular spectral curve, and triples (\overline{S}, U_1, D) where

ρ̄: S̄ → Σ is an irreducible non-singular *p*-cover of Σ in the total space of K with equation

$$\xi^p + a_1 \xi^{p-1} + \ldots + a_{p-1} \xi + a_p = 0,$$

for a_i ∈ H⁰(Σ, K²ⁱ), and ξ the tautological section of ρ̄*K².
U₁ is a line bundle on S̄ whose degree is

$$\deg U_1 = \deg V + (2p^2 - 2p)(g - 1)$$

• *D* is a positive subdivisor of the divisor of a_p of degree

$$\tilde{m} = \deg W - \deg V + 2p(g-1).$$

SPECTRAL DATA FOR U(p, p)-HIGGS BUNDLES: THE INVARIANTS

Since $\sigma^* M \cong M$ then

$$egin{aligned} &H^0(
ho^{-1}(\mathcal{U}),M)=H^0(
ho^{-1}(\mathcal{U}),M)^+\oplus H^0(
ho^{-1}(\mathcal{U}),M)^-\ &h^+:=\dim H^0(
ho^{-1}(\mathcal{U}),M)^+\ &=\ \dim H^0(\mathcal{U},V),\ &h^-:=\dim H^0(
ho^{-1}(\mathcal{U}),M)^-\ &=\ \dim H^0(\mathcal{U},W). \end{aligned}$$

Use the L_{σ} Lefschetz number [Atiyah-Bott 1968] associated to the involution σ on S

$$L_{\sigma} = \sum_{m=1}^{\infty} (-1)^{q} \operatorname{trace} \sigma|_{H^{0,q}(M)} = \operatorname{trace} \sigma|_{H^{0}(M)} = h^{+} - h^{-}$$
$$L_{\sigma} = \frac{(-\tilde{m}) + (4p(g-1) - \tilde{m})}{2} = 2p(g-1) - \tilde{m}.$$

$$\deg U_1 = v + (2p^2 - 2p)(g - 1) = \frac{\deg M}{2} - \frac{\tilde{m}}{2},$$

$$\deg U_2 = w + (2p^2 - 2p)(g - 1) = \frac{\deg M}{2} + \frac{\tilde{m}}{2} - 2p(g - 1).$$

No INTERSECTION OF $\mathcal{M}_{G^c}^{\Theta}$ with the smooth fibres What kind of curve does char(Φ) define for a *G*-Higgs field Φ ?

Generically, a reducible curve for G = Sp(2p, 2p), SU(p,q), ... $(p \neq q)$ Definition

An Sp(2p, 2p)-Higgs bundle is a pair $(V \oplus W, \Phi)$ for V and W rank 2p symplectic vector bundles, and the Higgs field

$$\Phi = \begin{pmatrix} 0 & \beta \\ \gamma & 0 \end{pmatrix} \text{ for } \begin{cases} \beta : W \to V \otimes K \\ \gamma : V \to W \otimes K \end{cases} \text{ and } \underbrace{\beta = -\gamma^{\mathrm{T}},}_{\beta = -\gamma^{\mathrm{T}},}$$

for $\gamma^{\rm T}$ the symplectic transpose of γ .

$$\det(x - \Phi) = (x^{2p} + a_1 x^{2p-2} + \ldots + a_{p-1} x^2 + a_p)^2$$

Note this is the case of $SU^*(2p)$ and $SO^*(2p)$, current work w/ N. Hitchin to appear soon.

Towards the spectral data for Sp(2p, 2p)-Higgs bundles

• Smooth *S* given by $\eta^{2p} + a_1 \eta^{2p-2} + \ldots + a_{p-1} \eta^2 + a_p = 0$; • Smooth \overline{S} given by $\xi^p + a_1 \xi^{p-1} + \ldots + a_{p-1} \xi + a_p = 0$ for $\xi = \eta^2$; for η tautological section of $\rho^* K$ and $a_i \in H^0(\Sigma, K^{2i})$

▲□▶▲□▶▲□▶▲□▶ □ のQで

SPECTRAL DATA APPROACH III

Towards the spectral data for Sp(2p, 2p)-Higgs bundles

• Smooth *S* given by $\eta^{2p} + a_1 \eta^{2p-2} + \ldots + a_{p-1} \eta^2 + a_p = 0$; • Smooth \overline{S} given by $\xi^p + a_1 \xi^{p-1} + \ldots + a_{p-1} \xi + a_p = 0$ for $\xi = \eta^2$; for η tautological section of $\rho^* K$ and $a_i \in H^0(\Sigma, K^{2i}) \circ$ $M := \operatorname{coker}(\rho^* \Phi - \eta)$ rank 2 vector bundle on *S*.

Spectral data for Sp(2p, 2p)-Higgs bundles (thesis)

There is a one to one correspondence between stable Sp(2p, 2p)-Higgs bundle ($E = V \oplus W, \Phi$) on Σ for which char(Φ)^{1/2} = 0 defines a smooth curve, and the spectral data (S, M) where

(a) the curve $\rho: S \to \Sigma$ is a smooth 2*p*-fold cover with equation

$$\eta^{2p} + a_1 \eta^{2p-2} + \ldots + a_{p-1} \eta^2 + a_p = 0,$$

in the total space of *K*, where $a_i \in H^0(\Sigma, K^{2i})$, and η is the tautological section of $\rho^* K$. The curve *S* has a natural involution σ acting by $\eta \mapsto -\eta$;

(b) *M* is a rank 2 vector bundle on *S* with $\Lambda^2 M \cong \rho^* K^{-2p+1}$, and such that $\sigma^* M \cong M$. Over the fixed points of the involution, the vector bundle *M* is acted on by σ with eigenvalues +1 and -1.

APPLICATIONS

Connectivity for $\mathcal{M}_{U(p,p)}$

U(p,p)-Higgs bundle of fixed degree $\sim (\bar{S}, U_1, D)$ with fixed deg M.

- The choice of *D* lies in the symmetric product $S^{\tilde{m}}\Sigma$;
- Together with a section s of K^{2p}[−D] with distinct zeros, D gives the map a_p ∈ H⁰(Σ, K^{2p});
- The choice of a_p lies in a vector bundle of rank (4p − 1)(g − 1) − m̃ over S^{m̃}Σ, whose total space is E; There is a natural map

$$\alpha: \mathcal{E} \to H^0(\Sigma, K^{2p})$$

• The choice of \overline{S} is given by a point in a Zariski open \mathcal{A} in

$$H^0(\Sigma, K^{2p}) \oplus \bigoplus_{i=1}^{p-1} H^0(\Sigma, K^{2i});$$

• The choice of U_1 is given by a fibration of Jacobians $\mathcal{J}ac$ over \mathcal{A} ;

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

APPLICATIONS

CONNECTIVITY FOR $\mathcal{M}_{U(p,p)}$ (thesis)

Each pair of invariants (m, \tilde{m}) labels exactly one connected component of $\mathcal{M}_{U(p,p)}$ which intersects the non-singular fibres of the Hitchin fibration

$$\mathcal{M}_{GL(2p,\mathbb{C})} \to \mathcal{A}_{GL(2p,\mathbb{C})}.$$

This component is given by the fibration of $\alpha^* \mathcal{J}ac$ over a Zariski open subset in

$$\mathcal{E} \oplus \bigoplus_{i=1}^{p-1} H^0(\Sigma, K^{2i}).$$

 $\mathcal{M}_{U(p,q)}$ via Morse theory by Bradlow–García-Prada– Gothen '02

APPLICATIONS

Connectivity for $\mathcal{M}_{Sp(2p,2p)}$

Sp(2p, 2p)-Higgs bundles with smooth spectral curve $\sim (S, M)$ for M rank 2 vector bundle with $\Lambda^2 M \cong \rho^* K^{-2p+1}$ and conditions on $\sigma^* M \cong M$.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

APPLICATIONS

Connectivity for $\mathcal{M}_{Sp(2p,2p)}$

Sp(2p, 2p)-Higgs bundles with smooth spectral curve $\sim (S, M)$ for M rank 2 vector bundle with $\Lambda^2 M \cong \rho^* K^{-2p+1}$ and conditions on $\sigma^* M \cong M$.

APPLICATIONS

Connectivity for $\mathcal{M}_{Sp(2p,2p)}$

Sp(2p, 2p)-Higgs bundles with smooth spectral curve $\sim (S, M)$ for M rank 2 vector bundle with $\Lambda^2 M \cong \rho^* K^{-2p+1}$ and conditions on $\sigma^* M \cong M$.

- N^σ = fixed point set of σ in the moduli space of stable rank 2 vector bundles of determinant ρ*K^{2p-1};
- \mathcal{P}_a the moduli space parabolic rank 2 vector bundles on \overline{S} whose marked points are the fixed points of the involution σ , whose weights are 1/2 and whose flag is by the distinguished eigenspaces corresponding to the eigenvalue -1 of σ [Andersen-Grove 2006];
 - Vector bundles in \mathcal{P}_a are stable [Nitsure 86];
 - $\mathcal{P}_a = \mathcal{P}_a^+ \sqcup \mathcal{P}_a^c$ through a natural involution on \mathcal{P}_a ;
 - \mathcal{P}_a^c is connected [Nitsure 86];

The choice of M is given by an element in

 $\mathcal{N}^{\sigma} \cong \mathcal{P}_{a}^{c}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

APPLICATIONS

CONNECTIVITY FOR $\mathcal{M}_{Sp(2p,2p)}$ (thesis)

The space $\mathcal{M}^{s}_{Sp(2p,2p)}$ is given by the fibration of \mathcal{P}^{c}_{a} , over a Zariski open set in the space

$$\bigoplus_{i=1}^{\nu} H^0(\Sigma, K^{2i}).$$

 $\mathcal{M}_{Sp(2p,2q)}$ via Morse Theory by García-Prada–Oliveira '12

APPLICATIONS

TOPOLOGICAL INVARIANTS

Milnor-Wood type inequalities for the Toledo invariant $\tau(v, w)$ associated to *G*-Higgs bundles appear naturally from the spectral data...

- U(p,p)-Higgs bundles, for which $\tau(v,w) = v w$
 - The invariant $\tilde{m} = w v + 2p(g 1)$ is the number of fixed points of σ with certain property.
 - Fixed points of σ are zeros of $a_p \in H^0(\Sigma, K^{2p})$, thus

$$0 \le w - v + 2p(g - 1) \le 4p(g - 1)$$

$$\left|\tau(v,w)\right| = |v-w| \le 2p(g-1)$$

- SU(p,p)-Higgs bundles, for which $\tau(v,w) = v = -w$
 - Methods for U(p, p) can be adapted, and we get

$$(\tau(v,w)| = |v| \le p(g-1))$$

• Also for $Sp(2n, \mathbb{R})$, Sp(2p, 2p)... and possibly others?

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Thank you for listening!