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CLASSICAL HIGGS BUNDLES
Σ compact Riemann surface of genus g > 2,
canonical bundle K = T∗Σ.

Definition

A Higgs bundle on a compact Riemann surface Σ of genus g > 1, is a
pair (E,Φ) for E a holomorphic vector bundle on Σ and Φ a section in
H0(Σ,End(E)⊗ K). See example.

The slope of a vector bundle F be µ := deg(F)/rk(F). A Higgs
bundle (E,Φ) is

stable if for each Φ-invariant subbundle F one has µ(F) < µ(E);

semi− stable if for each Φ-invariant subbundle F one has
µ(F) ≤ µ(E);

polystable if (E,Φ) = (E1,Φ1)⊕ (E2,Φ2)⊕ . . . (Er,Φr), where
(Ei,Φi) is stable with µ(Ei) = µ(E) for all i.

See example.
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Gc-HIGGS BUNDLES

Gc be a complex semisimple Lie group.

Definition

A Gc-Higgs bundle is a pair (P,Φ) where

P is a principal Gc-bundle over Σ,

Higgs field Φ is a holomorphic section of the vector bundle
AdP⊗C K,

for adP the vector bundle associated to the adjoint representation.

Can extend stability notions. Then, callMGc the moduli space
of S-equivalence classes of semi-stable Gc-Higgs bundles.
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Gc-HIGGS BUNDLES: EXAMPLES

- Classical Higgs bundles are given by GL(n,C)-Higgs bundles.

- For Gc ⊂ GL(n,C) one has classical Higgs bundles + extra
conditions:

SL(n,C)

(E,Φ) for
{

E rk n vector bundle s.t. ΛnE ∼= O
Φ : E → E ⊗ K s.t. Tr(Φ) = 0

Sp(2n,C)

(E,Φ) for


E rk 2n symplectic vector bundle

symplectic form ω on E
Φ : E → E ⊗ K s.t. ω(Φv,w) = −ω(v,Φw)
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THE HITCHIN FIBRATION
Let di, for i = 1, . . . , k, be the degrees of the basic invariant
polynomials pi on the Lie algebra gc of Gc.

Definition
The Hitchin fibration is

h : MGc −→ AGc :=

k⊕
i=1

H0(Σ,Kdi),

(E,Φ) 7→ (p1(Φ), . . . , pk(Φ)).

h is a proper map and dimAGc = dimMGc/2.
The Hitchin map makes the Higgs bundles moduli space into an
integrable system.
For most classical groups (not SO(2n,C)), we take polynomials
on Tr(Φi) for a basis of invariant polynomials.

See examples.
N.Hitchin ‘87
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SPECTRAL DATA APPROACH
THE IDEA

MGc // AGc =
⊕k

i=1 H0(Σ,Kdi)

(E,Φ) � // char(Φ) a = (a1, . . . , ak)

tt
S a dk−fold cover of Σ

{{
Spectral data

data on S

cc
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SPECTRAL DATA APPROACH: GL(n,C)

h : (E,Φ) 7→ char(Φ) ∈
n⊕

i=1

H0(Σ,Ki) = AGL(n,C)

char(Φ) = ηn + a1η
n−1 + a2η

n−2 + . . .+ an−1η + an

So the fibration looks as follows...

N.Hitchin ‘87, ‘07
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SPECTRAL DATA APPROACH: GL(n,C)
THE CONSTRUCTION

Starting with (S,M) we get a stable Higgs bundle (E,Φ) for

The rank n vector bundle E = ρ∗M;

The Higgs field Φ induced by

H0(ρ−1(U),M)
η−→ H0(ρ−1(U),M ⊗ ρ∗K)

for an open U ⊂ Σ by definition of direct image, gives

H0(U , ρ∗M) −→ H0(U , ρ∗M ⊗ K)

Pushes down to Φ : E → E ⊗ K.
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Starting with a stable (E,Φ) we get the spectral data (S,M) for

The smooth spectral curve S defined by det(η − ρ∗Φ) = 0;

For the line bundle U := coker(η − ρ∗Φ), one has ρ∗U = E.

The generic fibre of the Hitchin fibration is isomorphic to the Jacobian
of the spectral curve S



Gc -HIGGS BUNDLES THE HITCHIN FIBRATION SPECTRAL DATA APPROACH FOR REAL FORMS APPLICATIONS

SPECTRAL DATA APPROACH: SL(n,C)
AS CLASSICAL HIGGS BUNDLES + EXTRA DATA.

ΛnE = O oo // Λnρ∗M ∼= O

From [Beauville-Narasimhan-Ramanan, 1989],

Λnρ∗M ∼= Nm(M)⊗ K−n(n−1)/2.

Nm : Pic(S) → Pic(Σ)∑
nipi 7→

∑
niρ(pi)

Then Λnρ∗M = O if and only if Nm(M) ∼= Kn(n−1)/2, or equivalently

M ⊗ ρ∗K−(n−1)/2 ∈ Ker(Nm) =: Prym(S,Σ).

The generic fibre of the Hitchin fibration is biholomorphically
equivalent to the Prym variety Prym(S,Σ).
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G-HIGGS BUNDLES
SET UP

G a real reductive Lie group;

gC complexified Lie algebra of
G;

mC such that

gC = hC ⊕mC

H ⊂ G the maximal compact
subgroup;

hC complexified Lie algebra of
H;

Ad|HC : HC → GL(mC) is the
isotropy representation.

Definition
A principal G-Higgs bundle is a pair (P,Φ) where

P is a holomorphic principal HC-bundle;

Φ is a holomorphic section of (P×Ad m
C)⊗ K.

See example.
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G-HIGGS BUNDLES AS FIXED POINTS
IN THE FIBRES OF THE Gc HITCHIN FIBRATION

G a real form of Gc fixed by the anti-holomorphic involution τ

ρ the compact real form of Gc.

σ = ρτ a holomorphic involution.

Θ : (E,Φ) 7→ (σ(E),−σ(Φ))

N.Hitchin ‘87, ‘92
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G-HIGGS BUNDLES AS FIXED POINTS
IN THE FIBRES OF THE Gc HITCHIN FIBRATION

G a real form of Gc fixed by the anti-holomorphic involution τ
ρ the compact real form of Gc.
σ = ρτ a holomorphic involution.

Θ : (E,Φ) 7→ (σ(E),−σ(Φ))

Gc

τ

��

��

MGc

��

Θ

��
// AGc

��

−σ

��

M̃G =MΘ
Gc

// A−σGc

Gτ = G MG

See Example.
N.Hitchin ‘87, García-Prada – Gothen – Mundet ’09
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SPECTRAL DATA APPROACH I
DISCRETE INTERSECTION OF MΘ

Gc WITH THE SMOOTH FIBRES

G-Higgs bundles for split real forms (G = SL(n,R), Sp(2n,R), . . .)

Theorem (thesis)

The intersection ofMΘ
Gc with the smooth fibres of the Hitchin fibration

h :MGc → AGc .

is the space of elements of order 2 over the regular locus of AGc .

So we can study the fibration through the monodromy action...
G = SL(2,R) case ( thesis)

What happens for other groups?
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SPECTRAL DATA APPROACH II
POSITIVE DIMENSIONAL INTERSECTION OF MΘ

Gc WITH THE SMOOTH FIBRES

What kind of curve does char(Φ) define for a G-Higgs field Φ?

Generically, a smooth curve for G = U(p, p), SU(p, p)...

Definition
A U(p, p)-Higgs bundle over Σ is a pair (E,Φ) where E = V ⊕W for
V,W rank p vector bundles over Σ, and Φ the Higgs field given by

Φ =

(
0 β
γ 0

)
,

for β : W → V ⊗ K and γ : V → W ⊗ K. When ΛpV ∼= ΛpW∗, one
has an SU(p, p)-Higgs bundle.

det(x− Φ) = x2p + a1x2p−2 + . . .+ ap−1x2 + ap
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SPECTRAL DATA APPROACH II
TOWARDS THE SPECTRAL DATA FOR U(p, p)-HIGGS BUNDLES

◦ Smooth S given by η2p + a1η
2p−2 + . . .+ ap−1η

2 + ap = 0;
◦ Smooth S̄ given by ξp + a1ξ

p−1 + . . .+ ap−1ξ + ap = 0 for ξ = η2;
for η tautological section of ρ∗K and ai ∈ H0(Σ,K2i).

S

σ:η→−η

��

2p:1
ρ

&&

2:1
π // S̄ = S/σ

p:1

ρ̄
yy

Σ

Can be adapted to study SU(p, p)-Higgs bundles...
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SPECTRAL DATA APPROACH II
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◦ M := coker(ρ∗Φ− η) line bundle on S.

σ∗M ∼= M

''

π∗M = U1 ⊕ U2

��
S

σ:η→−η

��

2p:1
ρ

&&

2:1
π // S̄ = S/σ

p:1

ρ̄
vv

Σ

ρ∗M = V ⊕W

88

ρ̄∗U1 = V , ρ̄∗U2 = W

hh

Can be adapted to study SU(p, p)-Higgs bundles...
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SPECTRAL DATA APPROACH II
SPECTRAL DATA FOR U(p, p)-HIGGS BUNDLES (thesis)

There is a one to one correspondence between U(p, p)-Higgs bundles
(V ⊕W,Φ) on Σ with deg V > deg W and non-singular spectral
curve, and triples (S̄,U1,D) where

ρ̄ : S̄→ Σ is an irreducible non-singular p-cover of Σ in the total
space of K with equation

ξp + a1ξ
p−1 + . . .+ ap−1ξ + ap = 0,

for ai ∈ H0(Σ,K2i), and ξ the tautological section of ρ̄∗K2.
U1 is a line bundle on S̄ whose degree is

deg U1 = deg V + (2p2 − 2p)(g− 1)

D is a positive subdivisor of the divisor of ap of degree

m̃ = deg W − deg V + 2p(g− 1).
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SPECTRAL DATA APPROACH II
SPECTRAL DATA FOR U(p, p)-HIGGS BUNDLES: THE INVARIANTS

Since σ∗M ∼= M then

H0(ρ−1(U),M) = H0(ρ−1(U),M)+ ⊕ H0(ρ−1(U),M)−

h+ := dim H0(ρ−1(U),M)+ = dim H0(U ,V),

h− := dim H0(ρ−1(U),M)− = dim H0(U ,W).

Use the Lσ Lefschetz number [Atiyah-Bott 1968] associated to the
involution σ on S

Lσ =
∑

(−1)qtrace σ|H0,q(M) = trace σ|H0(M) = h+ − h−

Lσ =
(−m̃) + (4p(g− 1)− m̃)

2
= 2p(g− 1)− m̃.

deg U1 = v + (2p2 − 2p)(g− 1) =
deg M

2
− m̃

2
,

deg U2 = w + (2p2 − 2p)(g− 1) =
deg M

2
+

m̃
2
− 2p(g− 1).
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SPECTRAL DATA APPROACH III
NO INTERSECTION OF MΘ

Gc WITH THE SMOOTH FIBRES

What kind of curve does char(Φ) define for a G-Higgs field Φ?

Generically, a reducible curve for G = Sp(2p, 2p), SU(p, q), ... (p 6= q)

Definition

An Sp(2p, 2p)-Higgs bundle is a pair (V ⊕W,Φ) for V and W rank
2p symplectic vector bundles, and the Higgs field

Φ =

(
0 β
γ 0

)
for

{
β : W → V ⊗ K
γ : V → W ⊗ K

and
�� ��β = −γT,

for γT the symplectic transpose of γ.

det(x− Φ) = (x2p + a1x2p−2 + . . .+ ap−1x2 + ap)2

Note this is the case of SU∗(2p) and SO∗(2p),
current work w/ N. Hitchin to appear soon.
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SPECTRAL DATA APPROACH III
TOWARDS THE SPECTRAL DATA FOR Sp(2p, 2p)-HIGGS BUNDLES

◦ Smooth S given by η2p + a1η
2p−2 + . . .+ ap−1η
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◦ Smooth S̄ given by ξp + a1ξ
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S

σ:η→−η

��

2p:1
ρ
��

2:1
π // S̄ = S/σ

p:1

ρ̄
{{

Σ
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SPECTRAL DATA APPROACH III
TOWARDS THE SPECTRAL DATA FOR Sp(2p, 2p)-HIGGS BUNDLES

◦ Smooth S given by η2p + a1η
2p−2 + . . .+ ap−1η
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◦ Smooth S̄ given by ξp + a1ξ

p−1 + . . .+ ap−1ξ + ap = 0 for ξ = η2;
for η tautological section of ρ∗K and ai ∈ H0(Σ,K2i) ◦
M := coker(ρ∗Φ− η) rank 2 vector bundle on S.

σ∗M ∼= M

%% S

σ:η→−η

��

2p:1
ρ
��

2:1
π // S̄ = S/σ

p:1

ρ̄
{{

ρ∗M = V ⊕W // Σ



Gc -HIGGS BUNDLES THE HITCHIN FIBRATION SPECTRAL DATA APPROACH FOR REAL FORMS APPLICATIONS

SPECTRAL DATA APPROACH III
SPECTRAL DATA FOR Sp(2p, 2p)-HIGGS BUNDLES (thesis)

There is a one to one correspondence between stable Sp(2p, 2p)-Higgs
bundle (E = V ⊕W,Φ) on Σ for which char(Φ)1/2 = 0 defines a
smooth curve, and the spectral data (S,M) where

(a) the curve ρ : S→ Σ is a smooth 2p-fold cover with equation

η2p + a1η
2p−2 + . . .+ ap−1η

2 + ap = 0,

in the total space of K, where ai ∈ H0(Σ,K2i), and η is the
tautological section of ρ∗K. The curve S has a natural involution
σ acting by η 7→ −η;

(b) M is a rank 2 vector bundle on S with Λ2M ∼= ρ∗K−2p+1, and
such that σ∗M ∼= M. Over the fixed points of the involution, the
vector bundle M is acted on by σ with eigenvalues +1 and −1.
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APPLICATIONS
CONNECTIVITY FOR MU(p,p)

U(p, p)-Higgs bundle of fixed degree ∼ (S̄,U1,D) with fixed deg M.

The choice of D lies in the symmetric product Sm̃Σ;

Together with a section s of K2p[−D] with distinct zeros, D gives the
map ap ∈ H0(Σ,K2p);
The choice of ap lies in a vector bundle of rank (4p− 1)(g− 1)− m̃
over Sm̃Σ, whose total space is E ; There is a natural map

α : E → H0(Σ,K2p)

The choice of S̄ is given by a point in a Zariski open A in

H0(Σ,K2p)⊕
p−1⊕
i=1

H0(Σ,K2i);

The choice of U1 is given by a fibration of Jacobians J ac over A;
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APPLICATIONS
CONNECTIVITY FOR MU(p,p) (thesis)

Each pair of invariants (m, m̃) labels exactly one connected
component ofMU(p,p) which intersects the non-singular fibres of the
Hitchin fibration

MGL(2p,C) → AGL(2p,C).

This component is given by the fibration of α∗J ac over a Zariski
open subset in

E ⊕
p−1⊕
i=1

H0(Σ,K2i).

MU(p,q) via Morse theory by Bradlow–García-Prada– Gothen ‘02
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APPLICATIONS
CONNECTIVITY FOR MSp(2p,2p)

Sp(2p, 2p)-Higgs bundles with smooth spectral curve ∼ (S,M) for M rank 2
vector bundle with Λ2M ∼= ρ∗K−2p+1 and conditions on σ∗M ∼= M.

σ∗M ∼= M

%% S

σ:η→−η

��

2p:1
ρ
��

2:1
π // S̄ = S/σ

p:1

ρ̄
{{

ρ∗M = V ⊕W // Σ
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APPLICATIONS
CONNECTIVITY FOR MSp(2p,2p)

Sp(2p, 2p)-Higgs bundles with smooth spectral curve ∼ (S,M) for M rank 2
vector bundle with Λ2M ∼= ρ∗K−2p+1 and conditions on σ∗M ∼= M.

σ∗M ∼= M

%%

V ∈ Pc
a

��
S

σ:η→−η

��

2p:1
ρ
��

2:1
π // S̄ = S/σ

p:1

ρ̄
{{

ρ∗M = V ⊕W // Σ
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APPLICATIONS
CONNECTIVITY FOR MSp(2p,2p)

Sp(2p, 2p)-Higgs bundles with smooth spectral curve ∼ (S,M) for M rank 2
vector bundle with Λ2M ∼= ρ∗K−2p+1 and conditions on σ∗M ∼= M.

N σ = fixed point set of σ in the moduli space of stable rank 2
vector bundles of determinant ρ∗K2p−1;
Pa the moduli space parabolic rank 2 vector bundles on S̄ whose
marked points are the fixed points of the involution σ, whose weights
are 1/2 and whose flag is by the distinguished eigenspaces
corresponding to the eigenvalue −1 of σ [Andersen-Grove 2006];

Vector bundles in Pa are stable [Nitsure 86];
Pa = P+

a t Pc
a through a natural involution on Pa;

Pc
a is connected [Nitsure 86];

The choice of M is given by an element in

N σ ∼= Pc
a
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APPLICATIONS
CONNECTIVITY FOR MSp(2p,2p) (thesis)

The spaceMs
Sp(2p,2p) is given by the fibration of Pc

a , over a Zariski
open set in the space

p⊕
i=1

H0(Σ,K2i).

MSp(2p,2q) via Morse Theory by García-Prada–Oliveira ‘12
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APPLICATIONS
TOPOLOGICAL INVARIANTS

Milnor-Wood type inequalities for the Toledo invariant τ(v,w) associated to
G-Higgs bundles appear naturally from the spectral data...

U(p, p)-Higgs bundles, for which τ(v,w) = v− w
The invariant m̃ = w− v + 2p(g− 1) is the number of fixed
points of σ with certain property.
Fixed points of σ are zeros of ap ∈ H0(Σ,K2p), thus

0 ≤ w− v + 2p(g− 1) ≤ 4p(g− 1)�� ��|τ(v,w)| = |v− w| ≤ 2p(g− 1)

SU(p, p)-Higgs bundles, for which τ(v,w) = v = −w
Methods for U(p, p) can be adapted, and we get�� ��|τ(v,w)| = |v| ≤ p(g− 1)

Also for Sp(2n,R), Sp(2p, 2p)... and possibly others?
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Thank you for listening!
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