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Introduction

» Let X be a compact manifold.
Consider ordinary K-theory given by the groups

KO(X) = [X,Fred®(1)]  K*(X) = [X, Fred™ (#)]

- H is a complex co-dim Hilbert space,
- Fred® the space of bounded Fredholm operators,
- Fred™ the space of bounded self-adjoint Fredholm operators.
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Consider ordinary K-theory given by the groups

KO(X) = [X,Fred®(1)]  K*(X) = [X, Fred™ (#)]

- H is a complex co-dim Hilbert space,
- Fred® the space of bounded Fredholm operators,
- Fred™ the space of bounded self-adjoint Fredholm operators.

» Many interesting examples of Fredholm operators are unbounded
- for example elliptic differential operators
- the usual strategy is to realize the K-theory classes as
approximated signs of such families
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Introduction - the case of a torus
» Let X = T" be the base of the fibration
T2 - T2 x T" - T"

Fix a vector bundle & over T? x T" and couple the Dirac family on
the fibres T? to the potential of £. Such an operator acts on
Zo-graded bundle of smooth spinors as
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Fix a vector bundle & over T? x T" and couple the Dirac family on
the fibres T? to the potential of £. Such an operator acts on
Zo-graded bundle of smooth spinors as
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de 0
The characteristic class of the (stablilized) index

ind(9¢) = ker(0¢) — coker(d¢)

in de Rham cohomology is the form
ch-ind(3;) = — J n(e)
&= i R N

- the cohomology class ch-ind is invariant under smooth homotopies
of the K-theory representative of 4.



» Consider the fibration with odd dimensional fibres
To — To x T" — T"

Couple the family of Dirac operators on the fibres Ty to the
potential of the line bundle with the curvature

;
2*°’¢0 A dor.
m
This gives a Dirac family of the form
0= —i0p, + 1.

- no Zj-graded spinors.
- spectral flow around ¢;.



» Consider the fibration with odd dimensional fibres
To — To x T" — T"

Couple the family of Dirac operators on the fibres Ty to the
potential of the line bundle with the curvature

;
2*°’¢0 A dor.
m
This gives a Dirac family of the form
0= —i0p, + 1.

- no Zj-graded spinors.
- spectral flow around ¢;.

» Twist the spinor bundle by tensoring with a complex vector bundle

E—-> Ty x-- xTp.



» The odd K-theory K(T") can be identified with a subgroup in
KO(T x T") with virtual dimension zero (the rank of the index
bundle) which vanish in * x M.

- a representative of such map is given by the Atiyah-Singer
suspension

susp : KY(T") — KO(T"+1).



» The odd K-theory K(T") can be identified with a subgroup in
KO(T x T") with virtual dimension zero (the rank of the index
bundle) which vanish in * x M.

- a representative of such map is given by the Atiyah-Singer
suspension

susp : KY(T") — KO(T"+1).
» Define the Chern character of J¢ to be the composition

ch-ind; : W !och-ind osusp(d;)
Kl (Tn) N Hodd (Tn)
where W1 is the desuspension in cohomology:

\U_l . Heven(Tn+1) N HOdd(Tn) ‘-U_l — L
2w T,



» A Dirac suspension is an even Dirac family over T"*1 which is
homotopic to the Atiyah-Singer suspension

[52] = [susp o O¢]

- the character ch-ind(3z) can be solved with the families index
formula.
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» A Dirac suspension is an even Dirac family over T"*1 which is
homotopic to the Atiyah-Singer suspension

[02] = [susp o O¢]

- the character ch-ind(3z) can be solved with the families index
formula.

The character ch-ind; of d¢ is equal to

ch-ind; (3;) = V(7)) = %@L ch()\) A ch(€)
d
= o2 Nane)

» The 1-form part computes the spectral flow around ¢
The 3-form part is an obstruction of quantization
- Carey-Mickelsson-Murray.



Twisted K-Theory

» Let X be a compact manifold with a good cover {V;}.
We consider a K-theory twisted by a representative of H?(X,T)
- such class is determined by locally defined line bundles

Aj = V= Vin Vj}
- the components of the Cech cocycles are local bundle isomorphism

{fix: Vi = T Xj @ Ak = ik}
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Twisted K-Theory

» Let X be a compact manifold with a good cover {V;}.
We consider a K-theory twisted by a representative of H?(X,T)
- such class is determined by locally defined line bundles

Aj = V= Vin Vj}
- the components of the Cech cocycles are local bundle isomorphism
{fix : Vig = T, Xj @ Aje = i}

» Consider a set of local Hilbert bundles {H;} with the local bundle
isomorphisms

ujj - HJ - H’®)\’J
» Let the unitary transformations uj act on the spaces of Fredholm

operators Fred* by conjugation. Then the bundles of Freholm
operators

{Fred*)(H))}

glue together to form a fibre bundle.
- phase factors vanish under conjugation action.



A K-theory twisted by the repersentative {\;} in H?(X,T)
is defined by

K*(X,f) = [[(Fred”/(H))] «=0,1.

- continuous sections,
- homotopy classes in the space of such sections.
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Twisted K-Theory on T x M

» Let M be a compact manifold.
Fix a decomposable class

T=a— feH(T,Z)®@H*(M,Z) c H(T x M,Z).

Fix a complex line bundle X\ associated with .

The twisted K-group on a product, K*(T x M, 7), is isomor-
phic to an extension of

K+ (M)

e K M) :x@r=x}t by G ygkerion

(Solve this using the Mayer-Vietoris sequence in twisted K).
» For A =1 (the trivial line bundle) this is Kunneth's formula.

Take M = T?, and 3 = kx the generator of H?(M), then

KYT3,7) = (Z®Z) D (Z® L)
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- index maps valued in a twisted cohomology theory.

» Twisted cohomology and Chern character maps
- Bouwknegt-Carey-Mathai-Murray-Stevenson 02

Index for twisted Dirac families in the case of torsion twisting
- Mathai-Melrose-Singer 05

Index for twisted Dirac families in the decomposable case
- Mathai-Melrose-Singer 09

Index for twisted Dirac families - superconnection proof
- Benameur-Gorokhovsky 11

K'-Index for supercharge families in the decomposable case
- Harju-Mickelsson 12

Extension to equivariant K'-case with supercharge families
- Harju 12
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» Fix an open cover {T| x M, Ty x M} for T x M.

Denote by (T; n T4)(*1) the subset which contains +1 € T.
Fix a good open cover {U,} for M.

» A gerbe associated with a decomposable class a — [ can be viewed
as a pair of locally defined Hilbert bundles Fj; — T s x M together
with isomorphisms

Ua:FT|a_’F,L®/\|a over (TiﬁTT)(l) XUa

id: Fy > F,  over (T, n T x M

» The curvature forms of the local Hilbert bundles verify
ui(Fy) = Fy+ Fy,

- Fy; and F, are the curvature forms in Fy; and A.
» There are forms Q1 defined over T3 x M such that

F
Ql_QT:% on (TiﬁTT)(l) x M.
The form defined locally by d€2 is now a global 3-form over T x M.

Denote it by H « this form is cohomologous to g—¢ A 2F—*
s TC!



Realization of F as local Fock Bundles

» A Fock space F is an infinite dimensinal complex Hilbert space. It
has a vacuum vector

[0 =u_1Au2AU3A---
and a base can be chosen by

Uy A v Ay A |O>b1,...,b,7 ay>...>a =0
|O)b,,....5, = vacuum with states 0 > by > ... > b removed.

This is a charge k — | vector.
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Realization of F as local Fock Bundles

» A Fock space F is an infinite dimensinal complex Hilbert space. It
has a vacuum vector

[0 =u_1Au2AU3A---
and a base can be chosen by
Uy A v Ay A |0>b1,...,b,, a>...>a =0
|O)b,,....5, = vacuum with states 0 > by > ... > b removed.

This is a charge k — | vector.
» Split F into charge subspaces

F=@F®w.
keZ
» S: a unitary operator which raises the charge, S : F(k) — Flk+1),
N: computes a charge of a state, N = k in F¥).
» The loop algebra It (Lie algebra of LT) has a projective irreducible
highest weight representation on F:

[en, em] = N0p,—m.



» Take Fy; to be bundles of Fock spaces over Ty x M such that its
charge k subbundle transforms as the linebundle \®.

Note. This means that if h,, are some transition functions
of A > M (wrt the cover {U,}), then the transition func-
tions of F 3 are (hap)V.



» Take Fy; to be bundles of Fock spaces over Ty x M such that its
charge k subbundle transforms as the linebundle \®.

Note. This means that if h,, are some transition functions
of A > M (wrt the cover {U,}), then the transition func-
tions of F 3 are (hap)V.

» Fix T-valued local sections s, : U, — A.
Define a family of unitary operators

u, - (T, n T x U, —» U(F)
us(x) =sa(x)- S

- S creates a state of topological type A over M
- then, topologically, we get the isomorphisms

FT2F¢®>\ over (TiﬁTT)(l) x M



Supercharges on T x M

» The supercharge is an unbounded and self-adjoint Fredholm
operator defined by

¢

Z on Tw x M

Qu(x) =Yt ®e i +10®
k

- 1b; are generators of the Clifford algebra cl([t) subject to
{d)m djm} = 26n,—m~

- the gerbe is tensored by a trivial Clifford-module bundle:
{S®Fyu}.

- the Dixmier-Douady class is still the cup product.



Supercharges on T x M

» The supercharge is an unbounded and self-adjoint Fredholm
operator defined by

¢

Z on Tw x M

Qu(x) =Yt ®e i +10®
k

- 1b; are generators of the Clifford algebra cl([t) subject to
{Un, ¥m} = 260, —m.
- the gerbe is tensored by a trivial Clifford-module bundle:
{S®Fn}.

- the Dixmier-Douady class is still the cup product.
» The local families glue under conjugation by S.:

S.Qu(2m, p)S,t = @1(0,p)
- this follows from the rules

S.e0S; =(e0—1) S.eS;'=e, n#0.
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» In addition, pick any complex line bundle of finite rank £ on M and
take a tensor product with the gerbe:

{S®OF,®¢}

and let Q actonitas Q®1.
The supercharge has a representative in the twisted K-theory
group KX(T x M, T):
O
V14 (Qy)?

» - whats the role of £7
- how does this correspond to
K°(M)
1-))®KY(M)

{x e KY{(M) :x®)\=x}@(



Index of Q in Twisted Cohomology

» A twisted odd supercurvature is a pair of locally defined odd
supercurvatures F; on Ty x M

IFM = AiT +Q$T'

- A4 are usual superconnections
- recall that Q; — Qy = Fy.



Index of Q in Twisted Cohomology

» A twisted odd supercurvature is a pair of locally defined odd
supercurvatures F; on Ty x M

IFM = AiT +Q$T'

- A}y are usual superconnections
- recall that Q; — Qy = Fy.

» We shall use a one parameter family of such superconnections
2
Fip = (VtxQu + Vip)? + Q.

- x is a formal symbol with x? = 1 and it commutes with everything,
-t >0 real,
- V1 are the connections on F;:

V” = Vg + NV .



» The odd twisted super-Chern character is the form
ch-ind] = sTr(e )

-sTr applies the trace to the linear term in x.
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» The odd twisted super-Chern character is the form
ch-ind] = sTr(e )

-sTr applies the trace to the linear term in x.

The Chern character form ch-ind7 is an odd differential
form on T x M and a cocycle in the twisted cohomol-

ogy. The class in twisted cohomology is independent on the
choice of a superconnection.

Twisted cohomology is computed from the usual de-Rham
complex with the differential d — H.

» The independence on the superconnection means that if we are
given another superconnection A’, and a different connection on the
twiting line bundle such that the associated 3-curvature is H’, then

[chI(A)] = [chi(A)]

under the canonical isomorphism of cohomology groups which sends
the cohomology associated with (A*(M), d — H) to the cohomology
associated with (A*(M),d — H’). More precisely, if H' = H + dn,
then the isomorphism is determined by £ — e™" A €.



The co-time limit of the odd character over T x M is the
distribution valued odd differential form

d¢

i “Fuy = E — —Fun+Qy
tanjf;, sTr(e %) \mo(eg + 27r) 7 tre(e ).
The symbol d(ey + %) denotes the Dirac delta distribution.
The support of the characters localizes over the zero sub-
spaces of the supercharge families.
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We adopt the following strategy
» (1) Choose a covering map

T:RxM-—->TxM
The gerbe trivializes on R x M, then pull the supercharge
7(Q) : R x M — FredV).
» (2) Choose a superconnection on the cover
F = (Vexn*(Q) + n*(V))?
and define the index-character in the usual way
ch-ind; o 7*(F) = sTr(e ™).
» (3) Oberve that the dependence on the homotopy is of the form

d dA
—ch-ind; o 7*(F,) = —d(d—tte_F‘

dt )



» (4) If x € R is the coordinate in the cover, observe that

e—]Ft(x+27r,p) _ e—]Fz(X:P)—FA — e—Fr(X,P) A Ch(>\)

- this is not a periodic form, cannot be pulled back to T x M.
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» (4) If x € R is the coordinate in the cover, observe that

e—]Ft(x+27r,p) _ e—]Fz(X:P)—FA — e—Fr(X,P) A Ch(>\)

- this is not a periodic form, cannot be pulled back to T x M.

» (5) The infinite time limit is the distribution valued form

d¢
21

X

—Fg—NF})
2r '

tlin;g sTr(e™) = \/m——d(ep + =) A tre(e

» (6) Choose a section ¢ : T x M — R x M and pull the character to

Hedd(T x M, Q)
(1—ch(\) A 22 A ch(KO(M))

- compare with

KO(M)
1- ) ® KO(M)

{x e K}(M) :x®)\=x}@(



Associated with the supercharge @ with vacuum twist &
there is a character map

Hod(T x M, Q)
(1 —ch(\) A 22 A ch(KO(M))

~ T
ch-ind, (Q) €
whose equivalence class

\/E# A tre(eFe).

is invariant under smooth homotopies.
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» Consider a vector bundle & — T2 with Chern character equal to
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Example T3.

» Consider a vector bundle & — T2 with Chern character equal to
ch(§) = n— jdO; A dbs.
Fix A such that
ch(A) =1 — kdby A dbs.
» The character of @ with vacuum twist &:

d¢ d91 AN d92 dqj) d91 AN d92

d
27 (n—J 27i ) mo 2T 2mi

- the twisted K-theory class of @ depends on the parameter j up to
multiplets of k, this comes from the subgroup Zy.
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Application of This?

» T-dual transformation in the case of a product manifold gives an
isomorphism of groups

t:KYT x M,a— B) = K°(P)

such that P is the circle bundle whose Euler class is determined by S.
» Suppose that K}(T x M, a — f3) has a nontrivial torsion component.

» If 0 is a Dirac operator on P twisted by some complex vector bundle
&, then one can factor the index computation through the twisted
K-theory:

chlind; (t71 0 ).

This would reveal the torsion parts in K°(P).



Suspended Superchare

» The Atiyah-Singer suspension is a homotopy equivalence
susp : FredV) — QFred®
defined by

susp(A) = cos(s) +iQsin(s) se[0,7]
= cos(s) +isin(s) se€[m2n7].



Suspended Superchare

» The Atiyah-Singer suspension is a homotopy equivalence
susp : FredV) — QFred®
defined by

susp(A) = cos(s) +iQsin(s) se[0,7]
= cos(s) +isin(s) se€[m2n7].

» When applied fiberwise in a bundle of Fredholm operators, one gets
a homomorphism

a: KYT x M,7) = K%(T? x M, 7).

Goal. Define characteristic classes for the suspended super-
charges.



» The index can be computed using the superconnection tecnhiques.
For this reson we need to make avo @ an off diagonal operator
acting on Z,-grade spinors
Consider the complexified Clifford algebra subject to
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» The index can be computed using the superconnection tecnhiques.
For this reson we need to make avo @ an off diagonal operator
acting on Z,-grade spinors
Consider the complexified Clifford algebra subject to

(W', W} =—26" i je{0,1}
Realize this as
01 0 —i
2= o) =0 )

» Define a section of self-adjoint Fredholm operators

DY = cos(s)y° + sin(s) Q!

0 susp(QN)*\ /0 DI
susp(Q@'") 0 - Df 0



Note. The families D3 are not #-summable, i.e.

—t(D¥)? o
e is not a trace class operator.



Note. The families D3 are not #-summable, i.e.
(D2 .
e t(0") is not a trace class operator.

» In fact

(D)2 = cos®(s) +sin*(s)@* if se[0,7]
= 1 ifse([r2n].

Therefore, (D)2 are invertible outside the submanifold
(—e,m+e) xTx M (e small).

| will study the twisted index problem over this submanifold
- the index character will localize here as a bump-form and can be
extended to a bump-form over T? x M.



» Lift D to the covering space 7 : Ts x R x M — T? x M:
(D) : Ts x R x M — Fred©.

Define a one parameter family of superconnections for the lifted
family

A =~/tr*(D) + 7*V.



» Lift D to the covering space 7 : Ts x R x M — T? x M:
(D) : Ts x R x M — Fred©.

Define a one parameter family of superconnections for the lifted
family

A =~/tr*(D) + 7*V.
» The character form of the index bundle over T x R x M is equal to
chiind’ = sTr(e’Az)
- the even supertrace is applied here, which has the t — oo limit

s

lim sTr(e*Az) = cé(ep + E)(;(s . ,ﬂ*(F))

t—L 2

d
)ds A 2—;’7: A tre(e

- ¢ is a constant which will be fixed later.



Character of the Index

» The pullback of the character form to T? x M becomes well defined
if we quotient the rational cohomology by the normal subgroup

(1—ch(\) A % A ch(KY(Ty x M)).

recall that K®(T? x M, 7) is isomorhic to

KY(Ts x M)
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Character of the Index

» The pullback of the character form to T? x M becomes well defined
if we quotient the rational cohomology by the normal subgroup

(1—ch(\) A % A ch(KY(Ty x M)).

recall that K°(T? x M, 7) is isomorhic to

KY(Ts x M)
N ® KT, x M)

{x e K%(Ts x M) :x®)\=x}@(1

The character of the index of a suspended supercharge is
equal to

. d¢
ch-ind(susp(Q)) = cds A > A tre(e”F¢)

Heven( X M Q)
(1 —ch(\) A 22 A ch(KY(Ts x M)




» Define the de-suspension map ¥~ !

i . Heven(TZ % M,Q)

1 _ B
@ = 27 Jr, € (1 —ch(\)) A % A ch(K1(Ts x M))

HoY(T x M, Q)

(1—ch(M) A & A ch(KO(M))’




» Define the de-suspension map ¥~ !

i . Heven(T2 % M,Q)

1 _ B
@ = 27 Jr, € (1 —ch(\)) A % A ch(K1(Ts x M))

HoY(T x M, Q)

(1 —ch(\) A 22 A ch(KO(M))

The odd character is the map

ch—Aindi = cX ! o chiind, o susp(Q)



Supercharge Suspension

Problem.

Given an odd Dirac family d on X, there is a Dirac suspen-
sion, i.e. a Dirac family 05 on T x X which is represented in
K° by the same element as susp o 0.

- what is the analogue of this in the twisted K-theory?

- this is an application of the representation theory of It*.
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» Consider a new copy of the unit circle Ty and define a Fock bundle
Fs — Ts

- make the charge grows by 1 under translations around the cicle.
- this leads to a spectral flow around Ts.
Define the local tensor product bundles

F.xF - T? x M.

This is a gerbe with Dixmier-Douady class 7 = o — f5.



Supercharge Suspension

Problem.

Given an odd Dirac family d on X, there is a Dirac suspen-
sion, i.e. a Dirac family ds on T x X which is represented in
K° by the same element as susp o 0.

- what is the analogue of this in the twisted K-theory?

- this is an application of the representation theory of It*.

» Consider a new copy of the unit circle Ty and define a Fock bundle
Fs — Ts

- make the charge grows by 1 under translations around the cicle.
- this leads to a spectral flow around Ts.
Define the local tensor product bundles

F.xF - T? x M.

This is a gerbe with Dixmier-Douady class 7 = o — f5.
» We have two copies of projective representations for [t
- this gives a projective representation of [£*:

[ena 7(m] =0, [em em] = [fm fm] = n(sn,—m~



» Consider the real Clifford algebra cl(¢?) which is the polynomial
algebra generated by 1), with i = 0,1 and n € Z subject to the
relations

{Wh W} = 2876, .
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» Define a vacuum representation for cl([t?),
- there is a two dimensional vacuum where {3, 13} restict to cl(2).
- the vacuum subspace is annihilated by the operators v for all
n <0 with i =0,1.



» Consider the real Clifford algebra cl(¢?) which is the polynomial
algebra generated by 1), with i = 0,1 and n € Z subject to the
relations

{Wh W} = 2876, .

» Define a vacuum representation for cl([t?),
- there is a two dimensional vacuum where {3, 13} restict to cl(2).
- the vacuum subspace is annihilated by the operators v for all
n <0 with i =0,1.

» Tensor the gerbe with a trivial bundle of cl(t?)-modules.
Tensor with an arbitrary rank complex vector bundle

S®(FRF®¢,

- this bundle is Zy-graded (because S is).



» The even supercharge is the Fredholm section
QYT x Ty x M — Fred®
defined by

Q(s,6,p) =D N ®e k+ D Uk ®F « + Ui @1 + s @ 1.
k k

- the coordinate ¢ gets values in TT or T*.



» The even supercharge is the Fredholm section
QT : T x Ty x M — Fred®
defined by

QM (s,6,p) = ), Ul ®e k+ ) Ui OF k+ Yo @ L+5s® L.
k k

- the coordinate ¢ gets values in TT or T*.

The section @} determines an element in the twisted K-
theory group K°(T? x M, 7) and its index character is
ch-ind” = ;—S A d¢ A ch(§).

T 27



Twisted K-Theory on T3
» Recall that K*(T, x T?,7) is isomorphic to

Ko+1(T2)

(xe K(T?) : x®@\=x}® 1— N @K (T2

All the twisted K® and K classes associated to the second
summand are already known,
- remains to study the invariant part.



Twisted K-Theory on T3

» Recall that K*(T, x T?,7) is isomorphic to

K.+1(T2)
(1-))®K*+1(T?)

(xe K (T?) : x®@\=x}®

All the twisted K® and K classes associated to the second
summand are already known,
- remains to study the invariant part.

» No torsion in K*(T3) = all the K-theory classes can be represented
by a differential form.
Fix the angle coordinates #; and 6, for the circles in T2.
Fix a twisting line bundle A with a curvature equal to

1
—df; A dbs.
2mi
The invariant 1-forms satisfying

x A ch(A) = x  in cohomology

are x = dbf; and x = db,.



Torus - invariant part

» (1) Start with the local Fock bundles F s — Ty x T2
- defines a gerbe associated with the DD-class 7.
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Torus - invariant part
» (1) Start with the local Fock bundles F s — Ty x T2
- defines a gerbe associated with the DD-class 7.
» (2) Construct another Fock bundle F; — T, x T? such that
- the charge grows by one under translations around Ty, ,
- a trivial gerbe.
» (3) Form the tensor product bundles

FlT®F1 —>T“ XT2

- DD class 7.
» (4) Define the supercharge operator by

éw = Z Yok—1 D e_k + 21/)2/ ®F + Y ® 6.
k#0 ]
» (5) The zeros are on the submanifold Ty x {¢; = 0} x Tg,:

(@n)? = ), [kw2k71w72k+1 +2exe x +

k>0
+  khokt_ok + 2ff—k + (fo + 91)2]-



The supercharge operators CN,?“ determine a class in a K-
theory of T"*! twisted by the gerbe

SOF;;®F1®¢

- the conjugation action by S, on (NQ“ is the identity action since

S¢en5qjl =e,if n#0.



The supercharge operators CN,?“ determine a class in a K-
theory of T"*! twisted by the gerbe

SOF;;®F1®¢

- the conjugation action by S, on (NQ“ is the identity action since

S¢en5qjl =e,if n#0.

The characteristic class gives

_db,

T o

- this form would be well defined even in Hodd(T"+1),
- to see this, pick a superconnection A, and then

ch-ind” (Q)

S¢sTr(e_A2)S¢T1 = sTr(e‘Az) A e h
but, since df; A ch(\) = dfy, we have

5¢sTr(e*A2)5;1 = sTr(e*A2 ).



Note.

- for higher dimensional tori, tensor the Hilbert bundles with
complex vector bundles

= a complete geometric realization of K1(T"*1, 7).



Note.

- for higher dimensional tori, tensor the Hilbert bundles with
complex vector bundles

= a complete geometric realization of K1(T"*1, 7).

- even theory, KO(T"*1,7), can be solved with similar meth-
ods.



