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I. Motivation
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Seiberg-Witten theory

N = 2 supergravity

Moduli spaces of Calabi-Yau 3-manifolds
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II. Kähler Manifolds
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Definition

Let M be a complex manifold with complex structure J.

1 M is Hermitian if there exists a pseudo-Riemannian metric on
M such that

〈JX , JY 〉 = 〈X ,Y 〉

for all vector fields X ,Y .

2 Then M is a Kähler manifold if J is parallel,

DJ = 0,

where D is the Levi-Civita connection.
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Alternative Definition

The Kähler form ω on a Hermitian manifold M is given by

ω(X ,Y ) = 〈X , JY 〉.

M is a Kähler manifold ⇔ ω is closed (dω = 0)
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III. Special Kähler Manifolds
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Definition

A Kähler manifold M is called special if there exists
a flat torsion-free connection ∇ on M such that

(d∇J)(X ,Y )
def
= (∇X J)Y − (∇Y J)X = 0

∇ω = 0
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Example

If M is a Kähler manifold and D is flat, then setting ∇ = D makes
it into a special Kähler manifold, and ∇J = 0 holds.

Conversely, if ∇ is flat and ∇J = 0, then D = ∇ follows.
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Special Kähler Domains

A special Kähler domain is a connected open subset U ⊂ Cn with
a holomorphic function F such that the matrix

Im

(
∂2F

∂zi∂zj

)
is regular.

Kähler potential:

f =
1

2
Im
(∑

i ,j

∂F

∂zi
z j

)
U is a Kähler manifold with ω = i∂∂f and 〈·, ·〉 = ω(i·, ·).
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Special Flat Coordinates

A special Kähler domain U admits special flat coordinates

xi = Re(zi ), yj = Re

(
∂F

∂zi

)
.

Then ω = 2
∑

dxi ∧ dyi .

Induce flat connection ∇ on U such that ∇ω = 0.

U becomes a special Kähler manifold.

Special Kähler manifolds covered by flat coordinate charts.

Coordinate changes in Sp(2n,R) nR2n.
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IV. Realisations of Special Kähler Manifolds
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Definition

Consider T ∗Cn with

canonical coordinates (z1, . . . , zn,w1, . . . ,wn)

symplectic form Ω =
∑

dzi ∧ dwi

Hermitian form h = i · Ω(·, τ ·) of signature (n, n)
(τ complex conjugation)

Let M be a complex manifold, dimCM = n.
A holomorphic immersion ϕ : M → T ∗Cn is called

Lagrangian if ϕ∗Ω = 0,

non-degenerate if ϕ∗h is non-degenerate.
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Theorem 1 [ACD]

Lagrangian and non-degenerate ϕ induces by restricting to M:

local coordinates xi = Re(zi )|M , yi = Re(wi )|M
flat torsion-free connection ∇ on M

ω = 2
∑

dxi ∧ dyi

Kähler metric 〈·, ·〉 = Re(ϕ∗h)

Then:

1 M is a special Kähler manifold with ∇ and ω.

2 ω is the Kähler form for 〈·, ·〉.
3 The xi , yj yield special flat coordinate charts for M.
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Remark

Fact: A holomorphic Lagrangian immersion is locally a
closed holomorphic 1-form

ϕU : U → T ∗Cn.

Assume ϕU = dF for some holomorphic function F (shrink U):

wi =
∂F

∂zi
,

as required for special Kähler domains.
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Theorem 2 [ACD]

Let M be a simply connected special Kähler manifold,
dimCM = n.

1 There exists a holomorphic non-degenerate Lagrangian
immersion ϕ : M → T ∗Cn inducing 〈·, ·〉, ω and the flat
connection ∇.

2 ϕ is unique up to affine symplectic transformation preserving
the canonical real structure of T ∗Cn.
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a little detour through the harsh realm of affine differential
geometry. . .
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Definition

Let M be a smooth affine manifold, dim M = n, and
let ϕ : M → Rn+1 be an immersion.

The choice of a transversal vector field ξ on ϕ(M) determines:

Affine connection ∇ on M.

Bilinear form b(·, ·) given by

∇Xϕ∗(Y ) = ϕ∗(∇XY ) + b(X ,Y ) · ξ

for vector fields X ,Y tangent to M.

Volume form ϑ = det(ξ, . . .) on M.

Then ϕ is called an affine immersion.
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Definition

If b is non-degenerate, this is independent of the choice of ξ.

In this case there exists a unique transversal field ξ (up to sign)
such that

1 ∇ϑ = 0,

2 ϑ coincides with the volume form induced by b.

ϕ with this choice of ξ is called a Blaschke immersion.
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Definition

The affine shape operator S is defined by

∇X ξ = SX + α(X )ξ.

An affine hypersphere is a Blaschke immersion ϕ : M → Rn+1 with
shape operator

S = λ · id, λ ∈ R.

It is called

proper if λ 6= 0,

parabolic if λ = 0.
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Examples

Affine hyperspheres:

proper: sphere

parabolic: elliptic paraboloid

parabolic: hyperbolic paraboloid
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Fundamental Theorem of Affine Differential Geometry

Let M be a simply connected manifold with torsion-free connection
∇ and non-degenerate metric 〈·, ·〉. Then:

There exists a Blaschke immersion ϕ : M → Rn+1

with induced connection ∇ and Blaschke metric b = 〈·, ·〉.

⇔

The volume form for 〈·, ·〉 is ∇-parallel and ∇∗ is torsion-free and
projectively flat.

In the special Kähler case:

volume form ∼ ωm is ∇-parallel

∇∗ = J ◦ ∇ ◦ J is torsion-free and flat
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Theorem 3 [BC-1]

Let M be a simply connected special Kähler manifold,
dimRM = 2n, with flat connection ∇ and Kähler metric 〈·, ·〉.

Then there exists a Blaschke immersion ϕ : M → R2n+1 with
induced connection ∇ and Blaschke metric b = 〈·, ·〉.

ϕ is a parabolic hypersphere.
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Theorem 4 [BC-1]

A parabolic hypersphere M is a Blaschke immersion of a special
Kähler manifold.

⇔

There exists a complex structure on M such that b is Hermitian
and ω = b(·, J·) is ∇-parallel.
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Corollary

Let M be a special Kähler manifold with positive definite metric:
M complete ⇒ D flat

Follows from a theorem due to Calabi and Pogorelov, stating
that a parabolic sphere with positive definite metric is flat.

First proof by Lu using a maximum principle.
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V. Projective Special Kähler Manifolds
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Definition

A special Kähler domain U is called conic if

1 C× · U ⊆ U.

2 F is homogeneous of degree 2
(that is F (λz) = λ2F (z)).

A conic special Kähler manifold is a special Kähler manifold
covered by charts into conic special Kähler domains.
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Definition

A projective special Kähler manifold M is the orbit space

M = M/C×

of a conic special Kähler manifold M.
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Lemma

The Kähler metric 〈·, ·〉 on M induces a Kähler metric (·, ·) on M.
Locally:

(π∗x , π∗y)π(p) =
〈x , y〉p
〈p, p〉p

−
∣∣∣∣〈x , p〉p〈p, p〉p

∣∣∣∣2
where x , y ∈ TpC

n+1.
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Example

Let M = Cn+1 \ {0} and F (z) = i ·
∑

z2
j .

Then:

M = CPn.

(·, ·) is the Fubini-Study metric.

Recall Hopf fibration:

S
1 ↪→ S

2n+1 → CP
n

This is generalised by circle bundles over projective special Kähler
manifolds.
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Definition

Let M be a conic special Kähler manifold with universal cover M̃.
Let ϕ : M̃ → T ∗Cn be the immersion as in Theorem 2.

The Kähler potential

f (p) =
1

2
h(ϕ(p), ϕ(p))

on M̃ induces a Kähler potential f on M.
For a constant c > 0 define

Mc = {p ∈ M | f (p) = c}.

Fact: Mc is invariant under the action of S1 ⊂ C×.
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Definition

The canonical circle bundle on M is

S
1 ↪→ M1/2 → M.
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Theorem 5 [BC-2]

Let M be a projective special Kähler manifold and
S1 ↪→ M1/2 → M its canonical circle bundle.

Then M1/2 has a canonical structure of a proper affine hypersphere
whose structure (”Sasakian”) determines the projective special
Kähler geometry on M.
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Corollary

Let U be projective special Kähler domain with complete positive
definite metric.

Then U = CPn and the metric (·, ·) is a multiple of the
Fubini-Study metric.
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