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I. Motivation from Physics:
Fermions and Bosons
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Elementary particles

@ Elementary particle is represented by an element ) of some
Hilbert space H.

@ System composed of multiple particles i1, ..., ¥x:

PR RY € HH®---® Hy
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Fermions vs. Bosons

Every elementary particle is one of the following:
@ Fermion
o half-integer spin
e Pauli exclusion principle:
two fermions cannot occupy identical states
~> antisymmetric tensors

GrAvan- A e \H

e examples: electrons, protons, neutrons, neutrinos,. ..

© Boson
e integer spin
e multiple particles can occupy identical states
~> symmetric tensors

Yo € SKH

e examples: photons, pions, W- and Z-bosons,. ..
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Standard Model of Particle Physics

Supersymmetry as an attempt to generalise the non-relativistic
standard model to a relativistic model:

o Classical SUg-symmetry is insufficient
(Coleman-Mandula Theorem)

@ Relativistic theory might require transformations acting on
particle spins (fermions <+ bosons)

@ State space for one particle:
H= HO S Hla
where Hy = bosonic states and H; = fermionic states

@ System of n particles:

n

D <S"HO ® /\"_kH1>

k=1
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Supersymmetries

Supersymmetries are transformations exchanging bosonic and
fermionic states.
o Infinitesimal symmetries first considered in the 1970s.

@ Coordinate computations with real and Grassmann variables.

@ Later: Introduction of “superspaces” in particle physics:
Spaces parameterised by real variables and Grassmann

variables.
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Il. Inspired by Grothendieck:
Supermanifolds according to Berezin-Leites and Kostant

8/39



Definition of “supermanifold” based on principles of algebraic
geometry.

Example: Affine algebraic variety V

@ V zero set of some polynomial ideal J

@ algebra of functions on V:
o(V) =C[X1,...,X,]/T

@ points pe V &L maximal ideals 9t = My in O(V)

@ ~~» geometry of V encoded in the functions on V

Grothendieck Principle: Generalise by
@ allowing arbitrary commutative rings
@ associate arbitrary prime ideals to “points”

~> ringed spaces
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For supermanifolds we need the following concepts:
@ supercommutative rings/algebras

@ sheaves

10/39



Definition: Supercommutative Algebra

An R-algebra A is a superalgebra if it is Zo-graded. This means
A=Ay ® Ay
such that deg(x) = ¢ if x € A. and
deg(x - y) = deg(x) + deg(y) mod 2
for all homogeneous elements x,y € A.

Furthermore, A is called supercommutative if
x -y = (—1)dee(x)deely) ), .

for all homogeneous elements x,y € A.
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Example (the obvious one)

The exterior algebra A = A\ V over some vector space V' becomes
a Zp-graded algebra when setting

A=Ro AN Ve Ave..
Ay = V@/\3V@/\5V@...
It is supercommutative because
XNy =—-yAX

for all x,y € V.

(This leads to the irritating funny fact that the alternating algebra
in the category of IR-algebras becomes the symmetric algebra in
the category of Z,-graded R-algebras.)
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Definition: Sheaf

Let X be a topological space.
A sheaf O of (super)commutative rings is a collection of maps
{ U~ O(U) }U open in X

such that O(U) is a (super)commutative ring satisfying:
@ For all W C U C V there exist restriction homomorphisms

ow : O(U) = 0(W)

satisfying ol}, o o)) = o}y and o}, = idy.
QIfU=UU...UU and f;EO(U,'), then

. : U;
3 o) Vi o () =] & |olfoy, () = ey ()

and f is unique whenever it exists.

(X, 0) is called a (super)ringed space.
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Remark

Sheaves generalise. ..

@ the algebras of C°°-functions on the open subsets of a smooth
manifold;

@ the algebras of regular functions on open subsets of an affine
algebraic variety.

Common abuse of language: O(U) are the “functions on U".
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Definition: Morphisms of Ringed Spaces

Let (X,0x) and (Y,0Oy) be (super)ringed spaces.

A morphism (1, 9*) : (X,0x) — (Y,0Oy) consists of
@ a continuous map ¢ : X — Y

@ and a collection 9* of “pullback” homomorphisms
{ w;\/ : O(W) — O(¢_1(W)) }W open in Y

which commute with the restriction map.

They must preserve the Zy-grading in the super category.

Define isomorphisms accordingly.
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Remark

If the rings in the sheaves are rings of functions, then the ¢* are
the pullback maps for these functions from W to 1~ 1(W).
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Example

A superdomain U™k consists of an open subset U C R" and the
sheaf given by

O(W)=Cc*(W)e /\R¥, W openin U.

Notation:
O(W) = C=(W)[V1, ..., 9]
= COO(Xl7 e ,Xn)[191, oo ,79;(],
where x1, ..., X, are coordinates on U and ¥1,...,7 are

generators of the exterior algebra.
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Definition: Supermanifold

Let |M| be a topological space.

A superringed space M = (|M|, Q) is a supermanifold of
superdimension n|k, if there exists a cover of |M| by open sets W

such that

(W,0lw) = U(/"‘/k (Uﬂ/k some superdomain).

In other words: M is locally isomorphic to R,
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Some Properties of Supermanifolds (1)

Given M, the space |M| becomes a (classical) smooth manifold
Mied = (‘M’~ O/j)ﬂ

where
J=01+ 02

is the sheaf of ideals generated by the odd elements.
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Some Properties of Supermanifolds (II)

Associate to f € O(U) its value f(x) at x € U:

@ The unique A € R such that f — X is not invertible in any
neighbourhood of x.

@ !l This does not turn f into a classical function on U:
Wxe Ui =hx)] # [A=£]

In particular, any f € O(U); has constant value 0.

The stalk O, at x € |M| is a local ring with maximal ideal
M, = ker(f — f(x)).

Consequence:
A morphism (¢, ¢*) : M — N of supermanifolds induces
morphisms ¢} : O x) = Ox mapping DM () to M.
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Morphisms in Coordinates

Let UPl9 be a superdomain with coordinates xi, ¥},
and let M be a supermanifold.

Theorem:
o Let (¢,1*) : M — UPI9 be a morphism. If

a,-:l/}*(X,‘) (I:].,,p), b,:1/1*(791) (I:]-)aq))

then a; € O(M)g and b; € O(M);.

e Conversely, if a; € O(M)o and b; € O(M); are given, then
there exists a unique morphism (¢, %) : M — UP!9 such that

ai=¢*(x) (i=1,....,p), bi=v¢*W)(=1,...,q).
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Morphisms in Coordinates

Given a; € O(M)o and b; € O(M)1, there exists a unique morphism
(¢, 1*) : M — UPl9 such that

a,-:’(/)*(X,') (I:].,,p), b,:¢*(19,) (/:177q)

Sketch of Proof:
o Existence:

o V1,...,V,4 algebraically generate the exterior algebra,
so *(¥;) can be chosen arbitrarily in O(M);

e = enough to construct homomorphism C*°(U) — O(M)o
with x; — a;

e a; =y + &, where & € J is nilpotent and y; is not

o for f € C°°(U) define by formal Taylor expansion:

¢*(f):f(y1+§17,,_,yp+§p XZkl yl?"'a)’p)'fk
k

this sum is finite because the &; are nilpotent
@ Uniqueness: Use approximation of smooth functions by

polynomial functions. O



Example

Define morphism (¢, ¢*) : R'? — R? by
P(x) = x
and

V*(x) = x + 9192,
(i) = 9.

For arbitrary f € C*°(RR}), we then have

1/1*(f) = f(X) + f/(X)’ﬁl/l?Q.
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Geometric Intuition?

@ “M is essentially a classical manifold surrounded
by a cloud of odd stuff.” (V.S. Varadarajan)

@ “M can be thought of as M.y, surrounded by a nilpotent
fuzz.” (P. Deligne)

But see Varadarajan, Chapter 4.5, for the notion of points provided
by the functor of points.
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I1l. Examples
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examples are hard to find. ..

GOqg

examples of supermanif
examples of superman's strength

Australia

Google Search I'm Feeling Lucky
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Supermanifold = Exterior Bundle?

If E is a real vector bundle over the differentiable manifold My,
let A\ E denote the associated exterior bundle.
Then Mg = (Mo, T'(/\ E)) is a supermanifold.

Batchelor's Theorem:
Every supermanifold over My is (non-canonically) isomorphic to
Mg for some vector bundle E over Mj.

Remark:

@ Many more morphisms in the super category than in the
differentiable category.

@ Batchelor's Theorem does not hold for analytic
supermanifolds.

28 /39



Complex Projective Superspace

Let IP" be the complex projective n-space.
Define the complex projective superspace P"¥ as follows:

@ For V open in P”, let V/ denote its preimage in C"1\ {0}.
e Define action of t € C* on A(V') = H(V')[V1,...,04] by

£y (20 =) (e 2)y

and set O(V) = A(V)T".
@ Then O(V) = H(X)[V1,...,VYq| for some affine subspace
X c ot

@ O is a sheaf of supercommuting C-algebras on X and
Pk = (P", 0).

See also Manin, Chapter 4.3.
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Lie Supergroups

A Lie Supergroup G is a supermanifold with a morphism
w:GxG—G

such that there exists a unit e : R%% — G and an inverse map
t : G — G such that standard diagrams commute.

The linear supergroup GL(p|q) is an open supersubmanifold of
RP*+9°12P49 given as follows:

. . . 2 2
e Write coordinates in RP T9°12P9 35 follows:

Ao B
G Do)’
where the matrices Ag, Dy contain the even coordinates and

B1, (71 the odd coordinates.

e GL(p|q) is the open supersubmanifold defined by
det(Ao) det(Do) #0.
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IV. Differential Calculus and Berezin-Integration
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Definition: Derivation

A derivation D on an R-superalgebra A is an R-linear map
satisfying

D(x - y) = D(x) -y + (~1) ) deeP). D)
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Definition: Vector Fields

Let M be a supermanifold. A vector field on M is a derivation of
O, that is a family of derivations

{ Dy : O(U) - O(U) }U open in |M|-
The derivations of M form the tangent sheaf TM.

In coordinates:
e Extend derivations D € C*°(U) via D(¢;) = 0.
@ Define 6191. by 8191.(19/() = 5ik-
@ The derivations
Ox;» Oy,

form a module basis for the derivations of O(U).
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Definition: Tangent Vectors and the Differential

Let M be a supermanifold and p € |M|.
A tangent vector at p is a derivation v : O, — R of the stalk O,
into R. They form the tangent space T,M at p.

The differential di), of a morphism (¢,¢*) : M — N of
supermanifolds is the morphism

dyp: ToM — TypN, v vody.

Vector fields and differentials have properties similar to the
classical case (see Varadarajan, Chapter 4.4).
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Integration = Differentiation

The integral on R[¥1, ..., 9] is defined by

/19‘_0, if i| < k,
/gl...ﬁkzl,

/:aﬂkmaﬁl.

Observe that
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Definition: Berezin Integral

On a superdomain U"K the Berezin integral for compactly
supported sections s = ) . 50" is defined as

/ 10(U) = R, s+ / S(1,...,k) (%) dkx.
U
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Change of Variables

For a change of variables given locally as

¢(X’ 79) = (Ya 77)’
let
dy _ 0Oy
w5 0).
Ox oY
Theorem:

[s= [ v sBertin)
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