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I. Motivation from Physics:
Fermions and Bosons
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Elementary particles

Elementary particle is represented by an element ψ of some
Hilbert space H.

System composed of multiple particles ψ1, . . . , ψk :

ψ1 ⊗ · · · ⊗ ψk ∈ H1 ⊗ · · · ⊗ Hk
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Fermions vs. Bosons
Every elementary particle is one of the following:

1 Fermion

half-integer spin
Pauli exclusion principle:
two fermions cannot occupy identical states
 antisymmetric tensors

ψ1 ∧ ψ2 ∧ · · · ∧ ψk ∈
∧k

H

examples: electrons, protons, neutrons, neutrinos,. . .

2 Boson

integer spin
multiple particles can occupy identical states
 symmetric tensors

ψ1ψ2 · · ·ψk ∈ SkH

examples: photons, pions, W- and Z-bosons,. . .
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Standard Model of Particle Physics

Supersymmetry as an attempt to generalise the non-relativistic
standard model to a relativistic model:

Classical SU6-symmetry is insufficient
(Coleman-Mandula Theorem)

Relativistic theory might require transformations acting on
particle spins (fermions ↔ bosons)

State space for one particle:

H = H0 ⊕ H1,

where H0 = bosonic states and H1 = fermionic states

System of n particles:

n⊕
k=1

(
SkH0 ⊗

∧n−k
H1

)

5 / 39



Supersymmetries

Supersymmetries are transformations exchanging bosonic and
fermionic states.

Infinitesimal symmetries first considered in the 1970s.

Coordinate computations with real and Grassmann variables.

Later: Introduction of “superspaces” in particle physics:
Spaces parameterised by real variables and Grassmann
variables.

6 / 39



References

V.S. Varadarajan:
Supersymmetry for Mathematicians: An Introduction
Chapters 1.7 and 1.8

S. Weinberg:
The Quantum Theory of Fields III
Chapter 24

7 / 39

http://www.math.ucla.edu/~vsv/susy.html
http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=92287


II. Inspired by Grothendieck:
Supermanifolds according to Berezin-Leites and Kostant
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Definition of “supermanifold” based on principles of algebraic
geometry.

Example: Affine algebraic variety V

V zero set of some polynomial ideal I

algebra of functions on V :

O(V ) = C[X1, . . . ,Xn]/I

points p ∈ V
1:1←→ maximal ideals M = Mp in O(V )

 geometry of V encoded in the functions on V

Grothendieck Principle: Generalise by

allowing arbitrary commutative rings

associate arbitrary prime ideals to “points”

 ringed spaces
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For supermanifolds we need the following concepts:

supercommutative rings/algebras

sheaves
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Definition: Supercommutative Algebra

An R-algebra A is a superalgebra if it is Z2-graded. This means

A = A0 ⊕A1

such that deg(x) = ε if x ∈ Aε and

deg(x · y) = deg(x) + deg(y) mod 2

for all homogeneous elements x , y ∈ A.

Furthermore, A is called supercommutative if

x · y = (−1)deg(x) deg(y)y · x

for all homogeneous elements x , y ∈ A.
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Example (the obvious one)

The exterior algebra A =
∧

V over some vector space V becomes
a Z2-graded algebra when setting

A0 = R⊕
∧2

V ⊕
∧4

V ⊕ . . .

A1 = V ⊕
∧3

V ⊕
∧5

V ⊕ . . .

It is supercommutative because

x ∧ y = −y ∧ x

for all x , y ∈ V .
(This leads to the �����irritating funny fact that the alternating algebra
in the category of R-algebras becomes the symmetric algebra in
the category of Z2-graded R-algebras.)

12 / 39



Definition: Sheaf
Let X be a topological space.

A sheaf O of (super)commutative rings is a collection of maps

{ U 7→ O(U) }U open in X ,

such that O(U) is a (super)commutative ring satisfying:

1 For all W ⊂ U ⊂ V there exist restriction homomorphisms

%UW : O(U)→ O(W )

satisfying %UW ◦ %VU = %VW and %UU = idU .

2 If U = U1 ∪ . . . ∪ Uk and fi ∈ O(Ui ), then[
∃f ∈ O(U) ∀i : %UUi

(f ) = fi

]
⇔

[
%Ui
Ui∩Uj

(fi ) = %
Uj

Ui∩Uj
(fj)
]

and f is unique whenever it exists.

(X ,O) is called a (super)ringed space.
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Remark

Sheaves generalise. . .

the algebras of C∞-functions on the open subsets of a smooth
manifold;

the algebras of regular functions on open subsets of an affine
algebraic variety.

Common abuse of language: O(U) are the “functions on U”.
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Definition: Morphisms of Ringed Spaces

Let (X ,OX ) and (Y ,OY ) be (super)ringed spaces.

A morphism (ψ,ψ∗) : (X ,OX )→ (Y ,OY ) consists of

1 a continuous map ψ : X → Y

2 and a collection ψ∗ of “pullback” homomorphisms

{ ψ∗W : O(W )→ O(ψ−1(W )) }W open in Y

which commute with the restriction map.
They must preserve the Z2-grading in the super category.

Define isomorphisms accordingly.

15 / 39



Remark

If the rings in the sheaves are rings of functions, then the ψ∗ are
the pullback maps for these functions from W to ψ−1(W ).
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Example

A superdomain Un|k consists of an open subset U ⊆ Rn and the
sheaf given by

O(W ) = C∞(W )⊗
∧
R

k , W open in U.

Notation:

O(W ) = C∞(W )[ϑ1, . . . , ϑk ]

= C∞(x1, . . . , xn)[ϑ1, . . . , ϑk ],

where x1, . . . , xn are coordinates on U and ϑ1, . . . , ϑk are
generators of the exterior algebra.
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Definition: Supermanifold

Let |M| be a topological space.

A superringed space M = (|M|,O) is a supermanifold of
superdimension n|k, if there exists a cover of |M| by open sets W
such that

(W ,O|W ) ∼= U
n|k
W (U

n|k
W some superdomain).

In other words: M is locally isomorphic to Rn|k .
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Some Properties of Supermanifolds (I)

Given M, the space |M| becomes a (classical) smooth manifold

Mred = (|M|,O/I),

where
I = O1 + O2

1

is the sheaf of ideals generated by the odd elements.

19 / 39



Some Properties of Supermanifolds (II)

Associate to f ∈ O(U) its value f (x) at x ∈ U:

The unique λ ∈ R such that f − λ is not invertible in any
neighbourhood of x .

!!! This does not turn f into a classical function on U:[
∀x ∈ U : f1(x) = f2(x)

]
6⇒

[
f1 = f2

]
In particular, any f ∈ O(U)1 has constant value 0.

The stalk Ox at x ∈ |M| is a local ring with maximal ideal
Mx = ker(f 7→ f (x)).

Consequence:
A morphism (ϕ,ϕ∗) : M → N of supermanifolds induces
morphisms ϕ∗x : Oϕ(x) → Ox mapping Mϕ(x) to Mx .
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Morphisms in Coordinates

Let Up|q be a superdomain with coordinates xi , ϑj ,
and let M be a supermanifold.

Theorem:

Let (ψ,ψ∗) : M → Up|q be a morphism. If

ai = ψ∗(xi ) (i = 1, . . . , p), bi = ψ∗(ϑi ) (i = 1, . . . , q),

then ai ∈ O(M)0 and bi ∈ O(M)1.

Conversely, if ai ∈ O(M)0 and bi ∈ O(M)1 are given, then
there exists a unique morphism (ψ,ψ∗) : M → Up|q such that

ai = ψ∗(xi ) (i = 1, . . . , p), bi = ψ∗(ϑi ) (i = 1, . . . , q).
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Morphisms in Coordinates
Given ai ∈ O(M)0 and bi ∈ O(M)1, there exists a unique morphism
(ψ,ψ∗) : M → Up|q such that

ai = ψ∗(xi ) (i = 1, . . . , p), bi = ψ∗(ϑi ) (i = 1, . . . , q).

Sketch of Proof:
Existence:

ϑ1, . . . , ϑq algebraically generate the exterior algebra,
so ψ∗(ϑi ) can be chosen arbitrarily in O(M)1
⇒ enough to construct homomorphism C∞(U)→ O(M)0
with xi 7→ ai
ai = yi + ξi , where ξi ∈ I is nilpotent and yi is not
for f ∈ C∞(U) define by formal Taylor expansion:

ψ∗(f ) = f (y1 + ξ1, . . . , yp + ξp) =
<∞∑
k

1

k!
(∂kf )(y1, . . . , yp) · ξk

this sum is finite because the ξi are nilpotent

Uniqueness: Use approximation of smooth functions by
polynomial functions.
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Example

Define morphism (ψ,ψ∗) : R1|2 → R1|2 by

ψ(x) = x

and

ψ∗(x) = x + ϑ1ϑ2,

ψ∗(ϑi ) = ϑi .

For arbitrary f ∈ C∞(R1), we then have

ψ∗(f ) = f (x) + f ′(x)ϑ1ϑ2.
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Geometric Intuition?

“M is essentially a classical manifold surrounded
by a cloud of odd stuff.” (V.S. Varadarajan)

“M can be thought of as Mred, surrounded by a nilpotent
fuzz.” (P. Deligne)

But see Varadarajan, Chapter 4.5, for the notion of points provided
by the functor of points.
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III. Examples
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examples are hard to find. . .

27 / 39



Supermanifold = Exterior Bundle?

If E is a real vector bundle over the differentiable manifold M0,
let
∧

E denote the associated exterior bundle.
Then ME = (M0, Γ(

∧
E )) is a supermanifold.

Batchelor’s Theorem:
Every supermanifold over M0 is (non-canonically) isomorphic to
ME for some vector bundle E over M0.

Remark:

Many more morphisms in the super category than in the
differentiable category.

Batchelor’s Theorem does not hold for analytic
supermanifolds.
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Complex Projective Superspace

Let Pn be the complex projective n-space.
Define the complex projective superspace Pn|k as follows:

For V open in Pn, let V ′ denote its preimage in Cn+1 \ {0}.
Define action of t ∈ C× on A(V ′) = H(V ′)[ϑ1, . . . , ϑq] by

t.
∑
i

fi(z)ϑi =
∑
i

t−|i|fi(t−1z)ϑi

and set O(V ) = A(V ′)C
×

.

Then O(V ) ∼= H(X )[ϑ1, . . . , ϑq] for some affine subspace
X ⊂ Cn+1.

O is a sheaf of supercommuting C-algebras on X and

P
n|k = (Pn,O).

See also Manin, Chapter 4.3.
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Lie Supergroups
A Lie Supergroup G is a supermanifold with a morphism

µ : G × G → G

such that there exists a unit e : R0|0 → G and an inverse map
ι : G → G such that standard diagrams commute.

The linear supergroup GL(p|q) is an open supersubmanifold of
Rp2+q2|2pq given as follows:

Write coordinates in Rp2+q2|2pq as follows:(
A0 B1

C1 D0

)
,

where the matrices A0,D0 contain the even coordinates and
B1,C1 the odd coordinates.

GL(p|q) is the open supersubmanifold defined by
det(A0) det(D0) 6= 0.
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IV. Differential Calculus and Berezin-Integration
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Definition: Derivation

A derivation D on an R-superalgebra A is an R-linear map
satisfying

D(x · y) = D(x) · y + (−1)deg(x) deg(D)x · D(y).
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Definition: Vector Fields

Let M be a supermanifold. A vector field on M is a derivation of
O, that is a family of derivations

{ DU : O(U)→ O(U) }U open in |M|.

The derivations of M form the tangent sheaf TM.

In coordinates:

Extend derivations D ∈ C∞(U) via D(ϑi ) = 0.

Define ∂ϑi by ∂ϑi (ϑk) = δik .

The derivations
∂xj , ∂ϑi

form a module basis for the derivations of O(U).
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Definition: Tangent Vectors and the Differential

Let M be a supermanifold and p ∈ |M|.
A tangent vector at p is a derivation v : Op → R of the stalk Op

into R. They form the tangent space TpM at p.

The differential dψp of a morphism (ψ,ψ∗) : M → N of
supermanifolds is the morphism

dψp : TpM → Tψ(p)N, v 7→ v ◦ ψ∗p.

Vector fields and differentials have properties similar to the
classical case (see Varadarajan, Chapter 4.4).
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Integration = Differentiation

The integral on R[ϑ1, . . . , ϑk ] is defined by∫
ϑi = 0, if |i| < k,∫
ϑ1 · · ·ϑk = 1.

Observe that ∫
= ∂ϑk · · · ∂ϑ1 .
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Definition: Berezin Integral

On a superdomain Un|k the Berezin integral for compactly
supported sections s =

∑
i siϑ

i is defined as∫
: Oc(U)→ R, s 7→

∫
U

s(1,...,k)(x) dkx .
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Change of Variables

For a change of variables given locally as

ψ(x , ϑ) = (y , η),

let

Jψ =

(∂y
∂x −∂y

∂ϑ
∂η
∂x

∂η
∂ϑ

)
.

Theorem: ∫
s =

∫
ψ∗(s)Ber(Jψ)
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