Using metal-organic frameworks to understand catalysis

Chris Sumby Catalysis Figure

This chemistry honours project will explore insights into industrial catalysis and x-ray crystallography in metal-organic frameworks.

Many industrial chemicals are produced in reactions catalysed by transition metal-based complexes or organometallic species.

Understanding how these reactions work can allow the design of new or improved catalysts, or allow the active catalyst to be heterogenised into a porous, solid support to produce a more stable, reusable catalyst.

Certain metal-organic frameworks (MOFs) can act like a matrix to trap and reveal unusual reaction products or stabilise reactive intermediates. In particular, using a MOF that is poised to allow post-synthetic metalations we have been able to examine the products of organometallic transformations within MOF crystals by single crystal X-ray diffraction (SCXRD).[1,2]

This project will involve the synthesis of organometallic species within the stabilising environment of a MOF matrix and the study of organometallic transformations relevant to catalysis. For example, this might include the use of photochemistry to generate highly reactive, coordinatively unsaturated species in the MOF; extending our understanding of these species and examining their potential for catalysis.

Alternative project possibilites include the design of new MOF supports that allow ""matrix isolation"" of reactive intermediates or highly reactive, coordinatively unsaturated species.

  1. W. M. Bloch et al., Nat. Chem., 2014, 6, 906.
  2. A. Burgun et al., Angew. Chem. Int. Ed., 2017, 56, 8412.
Professor Chris Sumby

Supervisors

Professor Christopher Sumby

Co-supervisorsProfessor Christian Doonan

Research area: Macromolecular chemistry, metal-organic frameworks, porous materials, catalysis, organometallic chemistry - Centre for Advanced Nanomaterials

Recommended honours enrolmentHonours in Chemistry

Tagged in Honours projects - Chemistry, Honours projects - Chris Sumby, Honours projects - Christian Doonan